【題目】小張前往某精密儀器廠應(yīng)聘,公司承諾工資待遇如下.
工資待遇:每月工資至少3000元,每天工作8小時,每月工作25天,加工1件型零件計酬16元,加工1件型零件計酬12元,月工資底薪(800元)計件工資 .
進廠后小張發(fā)現(xiàn):加工1件型零件和3件型零件需要5小時;加工2件型零件和5件型零件需9小時.
(1)小張加工1件型零件和1件型零件各需要多少小時?
(2)若公司規(guī)定:小張每月必須加工兩種型號的零件,且加工型的數(shù)量不大于型零件數(shù)量的2倍,設(shè)小張每月加工零件件,工資總額為元,請你運用所學(xué)知識判斷該公司頒布執(zhí)行此規(guī)定后是否違背了工資待遇承諾?
【答案】(1)小張加工1件型零件需要2小時,加工1件型零件需要1小時(2)該公司執(zhí)行后違背了在工資待遇方面的承諾
【解析】
(1)設(shè)小張加工1件A型零件需要x小時,加工1件B型零件需要y小時,根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果;
(2)表示出小張每月加工的零件件數(shù),進而列出W與a的函數(shù),利用一次函數(shù)性質(zhì)確定出最大值,即可作出判斷.
(1)設(shè)小張加工1件型零件需要小時,加工1件型零件需要小時;
根據(jù)題意得:,解得:,
則小張加工1件型零件需要2小時,加工1件型零件需要1小時;
(2)由(1)可得小張每月加工A型零件a件時,還可以加工B型零件(8×25-2a)件,
根據(jù)題意得:W=16a+12×(8×25-2a)+800=-8a+3200,
∵-8<0,
∴W隨a的增大而減小,
由題意:8×25-2a≤2a,
∴a≥50,
當a=50時,W最大值為2800,
∵2800<3000,
∴該公司執(zhí)行后違背了在工資待遇方面的承諾.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在等腰Rt△ABC中,斜邊AC=4,點D為AC上一點,連接BD,則BD的最小值為 ;
問題探究
(2)如圖②,在△ABC中,AB=AC=5,BC=6,點M是BC上一點,且BM=4,點P是邊AB上一動點,連接PM,將△BPM沿PM翻折得到△DPM,點D與點B對應(yīng),連接AD,求AD的最小值;
問題解決
(3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,點M是BC上一點,MC=4km.現(xiàn)計劃在四邊形ABCD內(nèi)選取一點P,把△DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即△DCP區(qū)域面積盡可能小.則在四邊形ABCD內(nèi)是否存在這樣的點P?若存在,請求出△DCP面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=6,M為AD上一點,將△ABM沿BM翻折至△EBM,ME和BE分別與CD相交于O,F兩點,且OE=OD,則AM的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,一組同心圓的圓心為坐標原點,它們的半徑分別為1,2,3,…,按照“加1”依次遞增;一組平行線,,,,,…都與x軸垂直,相鄰兩直線的間距為l,其中與軸重合若半徑為2的圓與在第一象限內(nèi)交于點,半徑為3的圓與在第一象限內(nèi)交于點,…,半徑為的圓與在第一象限內(nèi)交于點,則點的坐標為_____.(為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時間是( 。
A. 1小時 B. 2小時 C. 3小時 D. 4小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在鈍角中,,,點為邊中點,點為邊中點,將繞點逆時針方向旋轉(zhuǎn)度().
(1)如圖②,當時,連接、.求證:;
(2)如圖③,直線、交于點.在旋轉(zhuǎn)過程中,的大小是否發(fā)生變化?如變化,請說明理由;如不變,請求出這個角的度數(shù);
(3)將從圖①位置繞點逆時針方向旋轉(zhuǎn),求點的運動路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,在反比例函數(shù)的圖象上運動,且始終保持線段的長度不變.為線段的中點,連接.則線段長度的最小值是_____(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖像如圖所示,則下列結(jié)論:①點,,是該拋物線上的點,則;②;③(為任意實數(shù)).其中正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,O為坐標原點,點A(1,2),過點A分別作x軸、y軸的平行線交反比例函數(shù)y=(x>0)的圖象于點B,C,延長OA交BC于點D.若△ABD的面積為2,則k的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com