【題目】借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y|x22x3|2圖象和性質(zhì),探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對(duì)應(yīng)值列表如下:

x

3

2

1

0

1

2

3

4

5

y

10

m

2

1

n

1

2

3

10

其中,m   ,n   

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出函數(shù)圖象;

3)觀察函數(shù)圖象:

①當(dāng)方程|x22x3|b+2有且僅有兩個(gè)不相等的實(shí)數(shù)根時(shí),根據(jù)函數(shù)圖象直接寫(xiě)出b的取值范圍為   

②在該平面直角坐標(biāo)系中畫(huà)出直線yx+2的圖象,根據(jù)圖象直接寫(xiě)出該直線與函數(shù)y|x22x3|2的交點(diǎn)橫坐標(biāo)為:   (結(jié)果保留一位小數(shù)).

【答案】13,2;(2)如圖見(jiàn)解析;(3)①b=﹣2b2;②﹣1.84.1

【解析】

1)把x=﹣2x1分別代入y|x22x3|2,即可求得;

2)描點(diǎn)、連線畫(huà)出圖形;

3)①根據(jù)圖象即可求得;②根據(jù)圖象的交點(diǎn)即可求得.

解:(1)把x=﹣2代入y|x22x3|2,得y3

m3,

x1代入y|x22x3|2,得y2,

n2

故答案為:3,2

2)如圖所示;

3)①由圖象可知,當(dāng)b=﹣2b2時(shí),函數(shù)y|x22x3|2圖象與直線yb有兩個(gè)交點(diǎn),

∵當(dāng)方程|x22x3|b+2有且僅有兩個(gè)不相等的實(shí)數(shù)根時(shí),b=﹣2b2

故答案為b=﹣2b2;

②如圖:直線與函數(shù)y|x22x3|2的交點(diǎn)橫坐標(biāo)為﹣1.84.1

故答案為:﹣1.84.1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)的圖象上,ABx軸于點(diǎn)BACy軸于點(diǎn)C,延長(zhǎng)CA交以A為圓心AB長(zhǎng)為半徑的圓弧于點(diǎn)E,延長(zhǎng)BA交以A為圓心AC長(zhǎng)為半徑的圓弧于點(diǎn)F,直線EF分別交x軸、y軸于點(diǎn)M、N,當(dāng)NF4EM時(shí),圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,∠A120°,點(diǎn)EBC邊的中點(diǎn),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn),設(shè)PD的長(zhǎng)度為xPEPC的長(zhǎng)度和為y,圖2y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為(  )

A.7B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古算書(shū)《周髀算經(jīng)》中記載周公與商高的談話,其中就有勾股定理的最早文字記錄,即“勾三股四弦五”,亦被稱作商高定理.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,,AB=3AC=4,則DE,F,G,H,I都在矩形KLMJ的邊上,那么矩形KLMJ的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】行千里致廣大是重慶人民向大家發(fā)出的旅游邀請(qǐng).如圖,某建筑物上有一個(gè)旅游宣傳語(yǔ)廣告牌,小亮在A處測(cè)得該廣告牌頂部E處的仰角為45°,然后沿坡比為512的斜坡AC行走65米至C處,在C處測(cè)得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EGCD垂直,且EF2米,則廣告牌頂部ECD的距離EG為(  )(參考數(shù)據(jù):sin76°≈097,cos76°≈024tan76°≈4

A.46B.44C.71D.69

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠B90°,AB4BC2,點(diǎn)DE分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α

1)問(wèn)題發(fā)現(xiàn)

①當(dāng)α時(shí),_______

②當(dāng)α180°時(shí),______

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.

3)問(wèn)題解決

CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線上時(shí),求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,AE平分BAC交邊BC于點(diǎn)E,經(jīng)過(guò)點(diǎn)A、D、E的圓的圓心F恰好在y軸上,F與y軸相交于另一點(diǎn)G.

(1)求證:BC是F的切線;

(2)若點(diǎn)A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求F的半徑;

(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠PBC,在射線BC上任取一點(diǎn)D,以線段BD的中點(diǎn)O為圓心作⊙O,且⊙OPB相切于點(diǎn)E

(1)求作:射線BP上一點(diǎn)A,使△ABD為等腰三角形,且AB=AD.(要求:運(yùn)用直尺和圓規(guī),保留作圖痕跡,不寫(xiě)作法)

(2)求證:AD是⊙O的切線.

(3)BD的長(zhǎng)為8cm,∠PBC=30°,求陰影部分的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案