【題目】如圖,在直角坐標系中,拋物線yax2bx2x軸交于點A(3,0)、B(1,0),與y軸交于點C

1)求拋物線的函數(shù)表達式.

2)在拋物線上是否存在點D,使得ABD的面積等于ABC的面積的倍?若存在,求出點D的坐標;若不存在,請說明理由.

3)若點E是以點C為圓心且1為半徑的圓上的動點,點FAE的中點,請直接寫出線段OF的最大值和最小值.

【答案】1;(2)存在,理由見解析;D(4, )或(2,);(3)最大值; 最小值

【解析】

1)將點A、B的坐標代入函數(shù)解析式計算即可得到;

2)點D應在x軸的上方或下方,在下方時通過計算得ABD的面積是ABC面積的倍,判斷點D應在x軸的上方,設(shè)設(shè)D(m,n),根據(jù)面積關(guān)系求出mn的值即可得到點D的坐標;

3)設(shè)E(x,y),由點E是以點C為圓心且1為半徑的圓上的動點,用兩點間的距離公式得到點E的坐標為E,再根據(jù)點FAE中點表示出點F的坐標,再設(shè)設(shè)F(m,n),再利用mn、與x的關(guān)系得到n=,通過計算整理得出,由此得出F點的軌跡是以為圓心,以為半徑的圓,再計算最大值與最小值即可.

解:(1)將點A(3,0)B(1,0)代入yax2bx2中,得

,解得,

2)若Dx軸的下方,當D為拋物線頂點(-1,)時,,

ABD的面積是ABC面積的倍,

,所以D點一定在x軸上方.

設(shè)D(m,n), ABD的面積是ABC面積的倍,

n

m=-4m2

D(4, )或(2,

3)設(shè)E(x,y),

∵點E是以點C為圓心且1為半徑的圓上的動點,

,

y=,

E,

FAE的中點,

F的坐標,

設(shè)F(m,n),

m=,n=,

x=2m+3,

n=,

2n+2=,

(2n+2)2=1-(2m+3)2,

4(n+1)2+4()2=1,

,

∴F點的軌跡是以為圓心,以為半徑的圓,

∴最大值:,

最小值:

最大值; 最小值

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).

(1)求直線與雙曲線的解析式.

(2)點P在x軸上,如果S△ABP=3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為,且過點.直線軸相交于點.

1)求該拋物線的解析式;

2)以線段為直徑的圓與射線相交于點,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca0)的圖象如圖所示,根據(jù)圖象解答下列問題:

1)寫出方程ax2+bx+c=0的兩個根;

2)寫出不等式ax2+bx+c0的解集;

3)寫出yx的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角板是我們學習數(shù)學的好幫手.將一對直角三角板如圖放置,點CFD的延長線上,點BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中有完全相同的三個小球,把它們分別標號為12,3. 小林和小華做一個游戲,按照以下方式抽取小球:先從布袋中隨機抽取一個小球,記下標號后放回布袋中攪勻,再從布袋中隨機抽取一個小球, 記下標號. 若兩次抽取的小球標號之和為奇數(shù),小林贏;若標號之和為偶數(shù),則小華贏.

1)用畫樹狀圖或列表的方法,列出前后兩次取出小球上所標數(shù)字的所有可能情況;

2)請判斷這個游戲是否公平,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC中,點D為邊BC上一點,點E在邊AC上,且ADE=∠B

(1) 如圖1,若ABAC,求證:

(2) 如圖2,若ADAE,求證:

(3) (2)的條件下,若DAC=90°,且CE=4,tanBAD,則AB____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的外接圓,的直徑,過的中點的直徑交弦于點,連接、.

1)如圖1,若點是線段的中點,求的度數(shù);

2)如圖2,在上取一點,使,求證:

3)如圖3,取的中點,連接并延長于點,連接交于點,若,且,求的長.

查看答案和解析>>

同步練習冊答案