精英家教網 > 初中數學 > 題目詳情

【題目】冬天來了,曬衣服成了頭疼的事情,聰明的小華想到一個好辦法,在家后院地面(BD)上立兩根等長的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線y=ax2-0.8x+c,如圖1,已知立柱AB=CD=2.6米,BD=8米.

1)求繩子最低點離地面的距離;

2)為了防止衣服碰到地面,小華在離AB3米的位置處用一根垂直于地面的立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN1米,離地面1.6米,求MN的長.

【答案】11米;(21.85

【解析】

1)根據題意可以求出拋物線的解析式,從而可以求得拋物線的頂點坐標,進而得到繩子最低點離地面的距離;

2)根據題意可以求得拋物線F1的函數解析式,然后將x=3代入求出的函數解析式即可解答本題.

1)∵拋物線經過點A02.6)、C8,2.6),∴,解得:a=0.1c=2.6,∴y=0.1x20.8x+2.6=0.1x42+1,∴當x=4時,y取得最小值,此時y=1,即繩子最低點離地面的距離1米;

2)由題意可得:拋物線F1的頂點坐標為(2,1.6),設拋物線F1的函數解析式為y=a1x22+1.6

∵點A02.6)在拋物線F1上,∴2.6=a1022+1.6,解得:a1=0.25,∴拋物線F1的函數解析式為y=0.25x22+1.6,當x=3時,y=0.25322+1.6=1.85,即MN的長是1.85米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax+bx+cx軸的兩個交點為B1,0)和C,與y軸的交點坐標為(0,-1.5)且此拋物線過點A3,6.

1)求此二次函數的解析式;

2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖.在平行四邊形紙片ABCD中,ACAB,ACBD相交于點O,將△ABC沿對角線AC折疊得到△AB'C.

(1)求證:以A、CD、B'為頂點的四邊形是矩形

(2)若四邊形ABCD的面積S=12cm,求陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2O3,組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是(

A. 2018,0B. 2019,1C. 2019,1D. 2018,-1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸的兩個交點分別為A(-3,0)、B(1,0),與y軸交于點D(0,3),過頂點C作CH⊥x軸于點H.

(1)求拋物線的解析式和頂點C的坐標;

(2)連結AD、CD,若點E為拋物線上一動點(點E與頂點C不重合),當△ADE與△ACD面積相等時,求點E的坐標;

(3)若點P為拋物線上一動點(點P與頂點C不重合),過點P向CD所在的直線作垂線,垂足為點Q,以P、C、Q為頂點的三角形與△ACH相似時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖ABC,B90°,AB4,BC2AC為邊作△ACE,ACE90°,AC=CE,延長BC至點D,使CD5連接DE.求證ABC∽△CED

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把邊長為1的正方形ABCD繞頂點A逆時針旋轉30°到正方形AB′C′D′,則它們的公共部分的面積等于_____

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923101670465536/1923902127538176/STEM/3534c7f6f1a5489684ae6308493b71da.png]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果拋物線的頂點在拋物線上,拋物線的頂點也在拋物線上時,那么我們稱拋物線互為關聯的拋物線.如圖1,已知拋物線互為關聯的拋物線,點分別是拋物線,的頂點,拋物線經過點

1)直接寫出的坐標和拋物線的解析式;

2)拋物線上是否存在點,使得是直角三角形?如果存在,請求出點E的坐標;如果不存在,請說明理由;

3)如圖2,點在拋物線上,點分別是拋物線,上的動點,且點的橫坐標相同,記面積為(當點與點重合時),的面積為(當點與點重合時,),令,觀察圖象,當時,寫出的取值范圍,并求出在此范圍內的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a>0)的對稱軸為x=-1,交x軸的一個交點為(x1,0),且0<x1<1, 則下列結論:①b>0,c<0;②a-b+c>0 ;③b<a ④ 3a+c>0,⑤9a-3b+c>0,其中正確的命題有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案