【題目】已知a,b是有理數,且a,b異號,試比較|a+b|,|a﹣b|,|a|+|b|的大小關系.
【答案】|a+b|<|a﹣b|=|a|+|b|.
【解析】分析: 畫出數軸,依據絕對值的幾何意義,得到|a+b|<|a-b|,|a-b|=|a|+|b|,即可得出|a+b|,|a-b|,|a|+|b|的大小關系.
詳解:
∵有理數a,b異號,
如圖,假設a>0>b,
∴當BO<AO時,|a+b|<AO;當BO≥AO時,|a+b|<BO,
而|a﹣b|=AB>AO或BO,
∴|a+b|<|a﹣b|,
又∵|a|+|b|=AO+BO=AB,
∴|a﹣b|=|a|+|b|,
∴|a+b|<|a﹣b|=|a|+|b|.
當a<0<b時,同理可得|a+b|<|a﹣b|=|a|+|b|.
點睛: 本題主要考查了絕對值以及有理數的運算,數軸上某個數與原點的距離叫做這個數的絕對值.
科目:初中數學 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:
(1)甲、乙兩組單獨工作一天,商店應各付多少元?
(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應付費用較少?
(3)若裝修完后,商店每天可盈利200元,你認為如何安排施工有利用商店經營?說說你的理由.(可以直接用(1)(2)中的已知條件)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。
(1)求證:四邊形CMAN是平行四邊形。
(2)已知DE=4,FN=3,求BN的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數關系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2 , 且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,F為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數為整數,則∠C的度數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】6張如圖所示的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內,未被覆蓋的部分(兩個矩形)用陰影部分表示,設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b滿足( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com