已知一次函數(shù)y=mx+2m+8與x軸、y軸交于點(diǎn)A、B,若圖象經(jīng)過(guò)點(diǎn)C(2,4).
(1)求一次函數(shù)的解析式;
(2)過(guò)點(diǎn)C作x軸的平行線,交y軸于點(diǎn)D,在△OAB邊上找一點(diǎn)E,使得△DCE構(gòu)成等腰三角形,求點(diǎn)E的坐標(biāo);
(3)點(diǎn)F是線段OB(不與點(diǎn)O、點(diǎn)B重合)上一動(dòng)點(diǎn),在線段OF的右側(cè)作正方形OFGH,連接AG、BG,設(shè)線段OF=t,△AGB的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

(1)把點(diǎn)C(2,4)代入一次函數(shù)y=mx+2m+8得:2m+2m+8=4,
解得m=-1,
則一次函數(shù)解析式為y=-x+6;

(2)點(diǎn)E在OB上時(shí),E1(0,2),E2(0,6);
作出CD的垂直平分線,交直線AB于E4,交x軸于E3,如圖3所示,
可得出點(diǎn)E在OA上時(shí),E3(1,0);
點(diǎn)E在AB上時(shí),E4(1,5);
過(guò)E5作E5M⊥CD,△E5MC為等腰直角三角形,
∵E5C=CD=2,
∴E5M=MC=
2
2
E5C=
2
,
∴E5(2-
2
,4+
2

同理E6(2+
2
,4-
2
);

(3)分兩種情況考慮:
①當(dāng)0<t<3時(shí),如圖1所示;
∵四邊形OFGH是正方形,
∴OF=OH=FG=GH=t,AH=BF=OB-OF=6-t,
則S△ABG=S△AOB-S△FBG-S△AHG-S正方形=18-
1
2
t(6-t)-
1
2
t(6-t)-t2=18-6t;
②當(dāng)3<t<6時(shí),如圖2所示,同理得到S△ABG=S△FBG+S△AHG+S正方形-S△AOB=6t-18.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將△ABC放在平面直角坐標(biāo)系中,使B、C在X軸正半軸上,若AB=AC.且A點(diǎn)坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(1,0).
(1)求邊AC所在直線的解析式;
(2)若坐標(biāo)平面內(nèi)存在三角形與△ABC全等且有一條公共邊,請(qǐng)寫(xiě)出這些三角形未知頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們知道海拔一定高度的山區(qū)氣溫隨著海拔高度的增加而下降.小明暑假到黃山去旅游,沿途他利用隨身所帶的測(cè)量?jī)x器,測(cè)得以下數(shù)據(jù):
海拔高度x(m)1400150016001700
氣溫y(°C)32.0031.4030.8030.20
(1)現(xiàn)以海拔高度為x軸,氣溫為y軸建立平面直角坐標(biāo)系,根據(jù)提供的數(shù)據(jù)描出各點(diǎn);
(2)已知y與x的關(guān)系是一次函數(shù)關(guān)系,求出這個(gè)關(guān)系式;
(3)若小明到達(dá)黃山天都峰時(shí)測(cè)得當(dāng)時(shí)的氣溫是29.24°C.求黃山天都峰的海拔高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,(1)求直線AB的解析式;
(2)若點(diǎn)C是第一象限內(nèi)的直線上的一個(gè)點(diǎn),且△BOC的面積為2,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(-2,-3)及點(diǎn)B(1,6).
(1)求此一次函數(shù)解析式;
(2)畫(huà)出此一次函數(shù)圖象草圖;
(3)求此函數(shù)圖象與坐標(biāo)圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲,乙兩種股票50個(gè)交易日內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)的有關(guān)數(shù)據(jù)如圖所示:
(1)現(xiàn)從第五個(gè)交易日開(kāi)始,每5個(gè)交易日記錄下兩種股票的交易價(jià)格數(shù)據(jù)做一次統(tǒng)計(jì)請(qǐng)?zhí)顚?xiě)下表:
平均數(shù)中位數(shù)方差
7
75.4
(2)根據(jù)你所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),從不同的角度對(duì)這次統(tǒng)計(jì)結(jié)果進(jìn)行分析.(至少寫(xiě)出兩點(diǎn))______
(3)試根據(jù)所給數(shù)據(jù),求出到第20個(gè)交易日為止,乙種股票的每股交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

星期天8:00~8:30,燃?xì)夤窘o平安加氣站的儲(chǔ)氣罐注入天然氣,注完氣之后,一位工作人員以每車(chē)20米3的加氣量,依次給在加氣站排隊(duì)等候的若干輛車(chē)加氣.儲(chǔ)氣罐中的儲(chǔ)氣量y(米3)與時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示.
(1)8:00~8:30,燃?xì)夤鞠騼?chǔ)氣罐注入了______米3的天然氣;
(2)當(dāng)x≥8.5時(shí),求儲(chǔ)氣罐中的儲(chǔ)氣量y(米3)與時(shí)間x(小時(shí))的函數(shù)關(guān)系式;
(3)正在排隊(duì)等候的20輛車(chē)加完氣后,儲(chǔ)氣罐內(nèi)還有天然氣______米3,這第20輛車(chē)在當(dāng)天9:00之前能加完氣嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某同學(xué)從家里出發(fā),騎自行車(chē)上學(xué)時(shí),速度v(米/秒)與時(shí)間t(秒)的關(guān)系如圖a,A(10,5),B(130,5),C(135,0).
(1)求該同學(xué)騎自行車(chē)上學(xué)途中的速度v與時(shí)間t的函數(shù)關(guān)系式;
(2)計(jì)算該同學(xué)從家到學(xué)校的路程(提示:在OA和BC段的運(yùn)動(dòng)過(guò)程中的平均速度分別等于它們中點(diǎn)時(shí)刻的速度,路程=平均速度×?xí)r間);
(3)如圖b,直線x=t(0≤t≤135),與圖a的圖象相交于P、Q,用字母S表示圖中陰影部分面積,試求S與t的函數(shù)關(guān)系式;
(4)由(2)(3),直接猜出在t時(shí)刻,該同學(xué)離開(kāi)家所走過(guò)的路程與此時(shí)S的數(shù)量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,⊙D交五軸于A、B,交x軸于C,過(guò)點(diǎn)C9直線:五=-2
2
x-8
與五軸交于P,且D9坐標(biāo)(z,1).
(1)求點(diǎn)C、點(diǎn)P9坐標(biāo);
(2)求證:PC是⊙D9切線;
(圖)判斷在直線PC上是否存在點(diǎn)E,使得S△EOP=4S△CDO?若存在,求出點(diǎn)E9坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案