如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.

(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以A,PM為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標(biāo).
(1) (2)存在!P為(2,1)或(5,-2)或(-3,-14) (3)D(2,1)

試題分析:(1)∵該拋物線過點C(0,-2),∴可設(shè)該拋物線的解析式為y=ax2+bx-2.
A(4,0),B(1,0),代入,得  解之
∴此拋物線的解析式為
(2)存在!如圖,設(shè)P點的橫坐標(biāo)為m,則P點的縱坐標(biāo)為,

當(dāng)1<m<4時,AM=4-m.又∵∠COA=∠PMA=90°,
∴① 當(dāng)時,△PMA∽△COA,即  
解之 m1="2," m2=4(舍去),   ∴P(2,1).
② 當(dāng)時,△APM∽△CAO,即
解之 m1="4," m2=5(均不合題意,舍去)
∴當(dāng)1<m<4時,P(2,1)  類似地可求出, 當(dāng)m>4時,P(5,-2)
當(dāng)m<1時,P(-3,-14)
綜上所述,符合條件的點P為(2,1)或(5,-2)或(-3,-14)
(3)如圖,設(shè)D點的橫坐標(biāo)為t(0<t<4),則D點的縱坐標(biāo)為
Dy軸的平行線交ACE.由題意,可求得直線AC的解析式為:,
E點的坐標(biāo)為.∴ =
從而,SDAC==-t2+4t=-(t-2)2+4.∴當(dāng)t=2時,△DAC面積最大.∴D(2,1)
點評:本題考查拋物線的知識,要求考生根據(jù)拋物線的概念和性質(zhì)來解本題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線軸于兩點,交軸于點,對稱軸為直線。且A、C兩點的坐標(biāo)分別為,

(1)求拋物線的解析式;
(2)在對稱軸上是否存在一個點,使的周長最。舸嬖冢埱蟪鳇c的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(biāo)(用含的代數(shù)式表示),兩點的坐標(biāo);
(2)經(jīng)探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側(cè)),與y軸的正半軸交于點C.

(1)點B的坐標(biāo)為      ,點C的坐標(biāo)為      (用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點P,使得△PAC是直角三角形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)請你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明的爸爸下崗后,自謀出路,做起了水果生意。一天,他先去批發(fā)市場,用100元購進甲種水果,用150元購進乙種水果。乙種水果比甲種水果多10千克,乙種水果的批發(fā)價比甲種水果的批發(fā)價高0.5元。然后,他到市場零售部,都按每千克2.8元零售,結(jié)果乙種水果很快售完。甲種水果售出80%時,出現(xiàn)滯銷,他便按原零售價的5折售完剩余水果。請你幫小明爸爸算一算這天賣水果是賠還是賺?賠或賺是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知菱形ABCD的邊長為2,點A在x軸負(fù)半軸上,點B在坐標(biāo)原點.點D的坐標(biāo)為(,3),拋物線y=ax2+b(a≠0)經(jīng)過AB、CD兩邊的中點.

(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個單位長度的速度沿x軸正方向勻速平移(如圖2),過點B作BE⊥CD于點E,交拋物線于點F,連接DF、AF.設(shè)菱形ABCD平移的時間為t秒(0<t<
①當(dāng)t=1時,△ADF與△DEF是否相似?請說明理由;
②連接FC,以點F為旋轉(zhuǎn)中心,將△FEC按順時針方向旋轉(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時,求t的取值范圍.(寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在函數(shù)中,我們規(guī)定:當(dāng)自變量增加一個單位時,因變量的增加量稱為函數(shù)的平均變化率.例如,對于函數(shù)y=3x+1,當(dāng)自變量x增加1時,因變量y=3(x+1)+1=3x+4,較之前增加3,故函數(shù)y=3x+1的平均變化率為3.

(1)①列車已行駛的路程s(km)與行駛的時間t(h)的函數(shù)關(guān)系式是s=300t,該函數(shù)的平均變化率是      ;其蘊含的實際意義是       
②飛機著陸后滑行的距離y(m)與滑行的時間x(s)的函數(shù)關(guān)系式是y=-1.5x2+60x,求該函數(shù)的平均變化率;
(2)通過比較(1)中不同函數(shù)的平均變化率,你有什么發(fā)現(xiàn);
(3)如圖,二次函數(shù)y=ax2+bx+c的圖像經(jīng)過第一象限內(nèi)的三點A、B、C,過點A、B、C作x軸的垂線,垂足分別為D、E、F,AM⊥BE,垂足為M,BN⊥CF,垂足為N,DE=EF,試探究△AMB與△BNC面積的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是二次函數(shù)圖象的一部分,其對稱軸為,若其與x軸一交點為A(3,0),則有圖象可知不等式的解集是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-2x2開口方向是(  )
A.向上B.向下C.向左D.向右

查看答案和解析>>

同步練習(xí)冊答案