【題目】閱讀理解題:
你知道為什么任何無限循環(huán)小數(shù)都可以寫成分?jǐn)?shù)形式嗎?下面的解答過程會(huì)告訴你原因和方法.
(1)閱讀下列材料:
問題:利用一元一次方程將 化成分?jǐn)?shù).
設(shè)
,可知 ,
.(請(qǐng)你體會(huì)將方程兩邊都乘以10起到的作用)
可解得 ,即
填空:將 直接寫成分?jǐn)?shù)形式為
(2)請(qǐng)仿照上述方法把小數(shù) 化成分?jǐn)?shù),要求寫出利用一元一次方程進(jìn)行解答的過程.

【答案】
(1)
(2)解:設(shè) .方程兩邊都乘以100,可得100× =100x
,可知 25+ =25+x,

可解得 ,即
【解析】(1)設(shè) =x.
方程兩邊都乘以10,可得10× =10x.
=0.444…,可知10× =4.444…=4+ ,
即4+x=10x.
解得:x= ,即 =

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+6x+k=0有兩個(gè)相等的實(shí)數(shù)根,則k的值為( )

A. 0 B. -9 C. 9 D. -6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中是中心對(duì)稱圖形的是(  )

A.平行四邊形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點(diǎn),且△ABM≌△DCM;E、F分別是線段BM、CM的中點(diǎn).
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】指出下列單項(xiàng)式中的同類項(xiàng),并將所有同類項(xiàng)寫成一個(gè)多項(xiàng)式,再合并同類項(xiàng).

y2x、2xy、2xy2、x、y、﹣3xy、﹣yx、2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,Ab=6cm,BC=8cm,對(duì)角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長,交BC于點(diǎn)E,過點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問題:

(1)當(dāng)t為何值時(shí),△AOP是等腰三角形?

(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;

(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請(qǐng)說明理由;

(4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,D,E為斜邊AB上的兩個(gè)點(diǎn),且BD=BC,AE=AC,則∠DCE的大小為(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016四川省資陽市)已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM.

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F.

①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時(shí),求t的值;

②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-4,2,-1,3這四個(gè)數(shù)中,最小的數(shù)是()

A. -4 B. 2 C. -1 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案