【題目】如圖,一艘海輪位于燈塔P的北偏東64°方向,距離燈塔120海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(zhǎng)(結(jié)果取整數(shù)).
參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05, 取1.414.

【答案】解:如圖作PC⊥AB于C.
由題意∠A=64°,∠B=45°,PA=120,
在Rt△APC中,sinA= ,cosA= ,
∴PC=PAsinA=120sin64°,
AC=PAcosA=120cos64°,
在Rt△PCB中,∵∠B=45°,
∴PC=BC,
∴PB= = ≈153.
∴AB=AC+BC=120cos64°+120sin64°
≈120×0.90+120×0.44
≈161.
答:BP的長(zhǎng)為153海里和BA的長(zhǎng)為161海里.

【解析】如圖作PC⊥AB于C.分別在Rt△APC,Rt△PCB中求解即可解決問(wèn)題.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用關(guān)于方向角問(wèn)題,掌握指北或指南方向線(xiàn)與目標(biāo)方向 線(xiàn)所成的小于90°的水平角,叫做方向角即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖1是由5個(gè)完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說(shuō)法中正確的是(
A.左、右兩個(gè)幾何體的主視圖相同
B.左、右兩個(gè)幾何體的左視圖相同
C.左、右兩個(gè)幾何體的俯視圖不相同
D.左、右兩個(gè)幾何體的三視圖不相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)課本上,同學(xué)們已經(jīng)探究過(guò)“經(jīng)過(guò)已知直線(xiàn)外一點(diǎn)作這條直線(xiàn)的垂線(xiàn)“的尺規(guī)作圖過(guò)程:
已知:直線(xiàn)l和l外一點(diǎn)P

求作:直線(xiàn)l的垂線(xiàn),使它經(jīng)過(guò)點(diǎn)P.
作法:如圖:⑴在直線(xiàn)l上任取兩點(diǎn)A、B;
⑵分別以點(diǎn)A、B為圓心,AP,BP長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)Q;
⑶作直線(xiàn)PQ.
參考以上材料作圖的方法,解決以下問(wèn)題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線(xiàn)l和l外一點(diǎn)P,
求作:⊙P,使它與直線(xiàn)l相切.(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形EFCG的邊長(zhǎng)分別為3和1,點(diǎn)F,G分別在邊BC,CD上,P為AE的中點(diǎn),連接PG,則PG的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC與BD交于點(diǎn)O,過(guò)點(diǎn)O作BD的垂線(xiàn)分別交AD,BC于E,F(xiàn)兩點(diǎn).若AC=2 ,∠AEO=120°,則FC的長(zhǎng)度為(
A.1
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)反比例函數(shù)的解析式為y= (k>0).
(1)若該反比例函數(shù)與正比例函數(shù)y=2x的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)為2,求k的值;
(2)若該反比例函數(shù)與過(guò)點(diǎn)M(﹣2,0)的直線(xiàn)l:y=kx+b的圖象交于A(yíng),B兩點(diǎn),如圖所示,當(dāng)△ABO的面積為 時(shí),求直線(xiàn)l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開(kāi)展“陽(yáng)光體育活動(dòng)”,決定開(kāi)設(shè)足球、籃球、乒乓球、羽毛球、排球等球類(lèi)活動(dòng),為了了解學(xué)生對(duì)這五項(xiàng)活動(dòng)的喜愛(ài)情況,隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種).

根據(jù)以上統(tǒng)計(jì)圖提供的信息,請(qǐng)解答下列問(wèn)題:
(1)m= , n=
(2)補(bǔ)全上圖中的條形統(tǒng)計(jì)圖.
(3)若全校共有2000名學(xué)生,請(qǐng)求出該校約有多少名學(xué)生喜愛(ài)打乒乓球.
(4)在抽查的m名學(xué)生中,有小薇、小燕、小紅、小梅等10名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求同時(shí)選中小紅、小燕的概率.(解答過(guò)程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y= x+6與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn),將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線(xiàn)AB上,折痕交x軸于點(diǎn)C.

(1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)若(1)中拋物線(xiàn)的頂點(diǎn)為D,在直線(xiàn)BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)若把(1)中的拋物線(xiàn)向左平移3.5個(gè)單位,則圖象與x軸交于F、N(點(diǎn)F在點(diǎn)N的左側(cè))兩點(diǎn),交y軸于E點(diǎn),則在此拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)Q,使點(diǎn)Q到E、N兩點(diǎn)的距離之差最大?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案