【題目】如果,⊙O是△ABC的外接圓,∠A=45°,BD∥OC交AC的延長線于點(diǎn)D.
(1)求證:BD是⊙O的切線;
(2)若∠D=30°,OC=2.
①求∠ABC的度數(shù);
②求AB的長.
【答案】(1)證明見解析;(2)①60°;②.
【解析】
(1)先利用同弧所對(duì)的圓周角和圓心角的關(guān)系證明∠BOC=90°,再由平行線的性質(zhì)得出OBD=90°,按照切線的判定定理可得答案;
(2)延長CO交⊙O于點(diǎn)E,連接AE,過C作CH⊥AB于H.①平行線的性質(zhì)可得∠ACE=∠D=30°,由直徑所對(duì)的圓周角為直角可得∠EAC=90°,從而可得∠E=60°,再利用同弧所對(duì)的圓周角相等可得答案;②由半徑的長求得直徑的長,利用30°角所對(duì)直角邊等于斜邊的一半,可得AE的長,由勾股定理求得AC的長,利用含45°角的直角三角形和含60°角的直角三角形,可分別求得AH和BH的長,兩者相加即可得出AB的長.
(1)證明:∵∠BAC=45°,
∴∠BOC=2∠BAC=90°,
∵BD∥OC,
∴∠BOC+∠OBD=180°,
∴∠OBD=90°,
∴BD是⊙O的切線;
(2)延長CO交⊙O于點(diǎn)E,連接AE,過C作CH⊥AB于H.
①∵BD∥OC,∠D=30°,
∴∠ACE=∠D=30°,
∵CE為直徑,
∴∠EAC=90°,
∴∠E=60°,
∴∠ABC=∠E=60°;
②∵OC=2,
∴CE=4,
∵∠EAC=90°,∠ACE=30°,
∴AECE=2,
∴AC2.
∵∠BAC=45°,
∴AH=CHAC2.
∵∠ABC=60°,
∴BHCH,
∴AB=AH+BH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位要印刷“市民文明出行,遵守交通安全”的宣傳材料.甲印刷廠提出:每份材料收2元印刷費(fèi),另收1000元的制版費(fèi);乙印刷廠提出:每份材料收3元印刷費(fèi),不收制版費(fèi).
(1)分別寫出兩個(gè)印刷廠的收費(fèi),(元)與印制數(shù)量(份)之間的關(guān)系式(不用寫出自變量的取值范圍);
(2)在同一坐標(biāo)系內(nèi)畫出它們的圖象,并求出當(dāng)印制多少份宣傳材料,兩個(gè)印刷廠的印制費(fèi)用相同?此時(shí)費(fèi)用為多少?
(3)結(jié)合圖象回答:在印刷品數(shù)量相同的情況下選哪家印刷廠印制省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,AB⊥CD,垂足為G,OG:OC=3:5,AB=8.點(diǎn)E為圓上一點(diǎn),∠ECD=15°,將 沿弦CE翻折,交CD于點(diǎn)F,圖中陰影部分的面積=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,AC=3,BC=4,點(diǎn)P是斜邊AB上一點(diǎn),若△PAC是等腰三角形,則線段AP的長可能為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形AOBC的三個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(0,6),B(8,0),按以下步驟作圖:
①以點(diǎn)O為圓心,適當(dāng)長度為半徑作弧,分別交OC,OB于點(diǎn)D,E;
②分別以點(diǎn)D,E為圓心,大于DE的長為半徑作弧,兩弧在∠BOC內(nèi)交于點(diǎn)F;
③作射線OF,交邊BC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為方便消費(fèi)者購物,準(zhǔn)備將原來的階梯式自動(dòng)扶梯改造成斜坡式自動(dòng)扶梯.如圖所示,已知原階梯式自動(dòng)扶梯AB長為10m,坡角∠ABD為30°;改造后的斜坡式自動(dòng)扶梯的坡角∠ACB為15°,請(qǐng)你計(jì)算改造后的斜坡式自動(dòng)扶梯AC的長度,(結(jié)果精確到0.lm.溫馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,甲、乙兩人在附近的景點(diǎn)游玩,甲從兩個(gè)景點(diǎn)中任意選擇一個(gè)游玩,乙從三個(gè)景點(diǎn)中任意選擇一個(gè)游玩.
(1)乙恰好游玩景點(diǎn)的概率為 .
(2)用列表或畫樹狀圖的方法列出甲、乙恰好游玩同一景點(diǎn)的所有等可能的結(jié)果.并求甲、乙恰好游玩同一景點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步提高全民“節(jié)約用水”意識(shí),某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動(dòng),李明隨機(jī)抽查了所住小區(qū)x戶家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖:
(1)求x并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這x戶家庭的月平均用水量;并估計(jì)李明所住小區(qū)620戶家庭中月用水量低于月平均用水量的家庭戶數(shù);
(3)從月用水量為5m3和9m3的家庭中任選兩戶進(jìn)行用水情況問卷調(diào)查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com