【題目】規(guī)定:若y表示一個(gè)函數(shù),令M=|y|,我們則稱函數(shù)M為函數(shù)y的“幸福函數(shù)”.
(1)請(qǐng)寫出一次函數(shù)y=x﹣3的“幸福函數(shù)”M的解析式(解析式中不能含有絕對(duì)值);
(2)若一次函數(shù)y=與反比例函數(shù)y=(k>0)的“幸福函數(shù)”M有三個(gè)交點(diǎn),從左至右依次為A,B,C三點(diǎn),并且BC=,求點(diǎn)A的坐標(biāo);
(3)已知a、b為實(shí)數(shù),二次函數(shù)y=x2+ax+b的“幸福函數(shù)”M,M=2恒有三個(gè)不等的實(shí)數(shù)根.
①求b的最小值;
②若該方程的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,求a和b的值.
【答案】(1) M=;(2) A(﹣1,8);(3) ①-2;②a=﹣16,b=62.
【解析】
(1)根據(jù)“幸福函數(shù)”求解即可;
(2)由題意設(shè)B(m,﹣m+),C(n,﹣n+),且m<n,由BC=,得到,解得n=m+1,則C(m+1,﹣m+﹣),由B、C都在反比例函數(shù)y=上,可得m(﹣m+)=(m+1)(﹣m+),解得:m=2,B(2,4),把B(2,4)代入y=得到k=8,解方程組可得的A坐標(biāo);
(3)①由題意:拋物線y=x2+ax+b的頂點(diǎn)坐標(biāo)的縱坐標(biāo)為﹣2,由此構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;
②當(dāng)y=2時(shí),2=x2+ax+b,可得x2+ax+b﹣2=0,設(shè)方程的兩個(gè)根為x1,x2,(x1<x2),則x1+x2=﹣a,x1x2=b﹣2,由方程M=2的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,則有:x22=x12+(﹣)2,構(gòu)建方程組求出a、b即可.
(1)M=.
(2)由題意設(shè)B(m,﹣m+),C(n,﹣n+),且m<n.
∵BC=,∴,解得:n=m+1,則C(m+1,﹣m+﹣).
∵B、C都在反比例函數(shù)y=上,∴m(﹣m+)=(m+1)(﹣m+),解得:m=2,∴B(2,4),把B(2,4)代入y=得到k=8,由,解得:或,∴A(﹣1,8).
(3)①由題意:拋物線y=x2+ax+b的頂點(diǎn)坐標(biāo)的縱坐標(biāo)為﹣2,∴﹣2=,∴b=a2﹣2.
∵>0,∴b有最小值,最小值為﹣2.
②當(dāng)y=2時(shí),2=x2+ax+b,∴x2+ax+b﹣2=0,設(shè)方程的兩個(gè)根為x1,x2,(x1<x2),則x1+x2=﹣a,x1x2=b﹣2.
∵方程M=2的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,則有:x22=x12+(﹣)2,∴(x2+x1)(x2﹣x1)=,∴x2﹣x1=﹣,∴(x1+x2)2﹣4x1x2=a2,∴a2﹣4(b﹣2)=a2①
b=a2﹣2②
由①②可得:b=62,a=±16.
∵x1+x2=﹣a>0,∴a<0,∴a=﹣16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN 交 AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“圓材埋壁”是我國(guó)著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?” 用現(xiàn)代的數(shù)學(xué)語(yǔ)言表達(dá)是:“如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長(zhǎng)”. 依題意,CD長(zhǎng)為( )
A. 寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某古城幾個(gè)地名的平面示意圖,已知民俗街和博物館的坐標(biāo)分別為點(diǎn),,請(qǐng)仔細(xì)觀察示意圖完成以下問題.
(1)請(qǐng)根據(jù)題意在圖上建立平面直角坐標(biāo)系.
(2)在(1)的條件下,寫出圖上B,D兩地點(diǎn)的坐標(biāo).
(3)某周末甲,乙,丙,丁等4位同學(xué)分別到古城樓,民俗街,文化廣場(chǎng),博物館四個(gè)地點(diǎn)游玩,且每人只去一個(gè)地點(diǎn),老師打電話問了趙,錢,孫,李等四位同學(xué),趙說:“甲在民俗街,乙在文化廣場(chǎng)”;錢說:“丙在博物館,乙在民俗街”;孫說:“丁在民俗街,丙在文化廣場(chǎng)”;李說:“丁在古城樓,乙在文化廣場(chǎng)”.若知道趙,錢,孫,李每人都只說對(duì)了一半,則丙同學(xué)游玩的地點(diǎn)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)若△DAF的周長(zhǎng)為10,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)長(zhǎng)方形花園,對(duì)角線AC是一條小路,現(xiàn)要在AD邊上找一個(gè)位置建報(bào)亭H,使報(bào)亭H到小路兩端點(diǎn)A、C的距離相等.
(1)用尺規(guī)作圖的方法,在圖中找出報(bào)亭H的位置(不寫作法,但需保留作圖痕跡,交代作圖結(jié)果)
(2)如果AD=80m,CD=40m,求報(bào)亭H到小路端點(diǎn)A的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn).
(1)如圖①,若于點(diǎn),,求的度數(shù);
(2)如圖②,若交于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=16,AD是BC邊上的中線且AD=6,是AD上的動(dòng)點(diǎn),是AC邊上的動(dòng)點(diǎn),則的最小值是( ).
A.B.16C.6D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com