【題目】現(xiàn)有A,B兩種商品,買(mǎi)2件A商品和1件B商品用了90元,買(mǎi)3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購(gòu)買(mǎi)A,B兩種商品共10件,總費(fèi)用不超過(guò)350元,但不低于300元,問(wèn)有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低?
【答案】
(1)解:設(shè)A商品每件x元,B商品每件y元,
依題意,得 ,
解得 .
答:A商品每件20元,B商品每件50元
(2)解:設(shè)小亮準(zhǔn)備購(gòu)買(mǎi)A商品a件,則購(gòu)買(mǎi)B商品(10﹣a)件
解得5≤a≤6
根據(jù)題意,a的值應(yīng)為整數(shù),所以a=5或a=6.
方案一:當(dāng)a=5時(shí),購(gòu)買(mǎi)費(fèi)用為20×5+50×(10﹣5)=350元;
方案二:當(dāng)a=6時(shí),購(gòu)買(mǎi)費(fèi)用為20×6+50×(10﹣6)=320元;
∵350>320
∴購(gòu)買(mǎi)A商品6件,B商品4件的費(fèi)用最低.
答:有兩種購(gòu)買(mǎi)方案,方案一:購(gòu)買(mǎi)A商品5件,B商品5件;方案二:購(gòu)買(mǎi)A商品6件,B商品4件,其中方案二費(fèi)用最低
【解析】(1)設(shè)A商品每件x元,B商品每件y元,根據(jù)關(guān)系式列出二元一次方程組.(2)設(shè)小亮準(zhǔn)備購(gòu)買(mǎi)A商品a件,則購(gòu)買(mǎi)B商品(10﹣a)件,根據(jù)關(guān)系式列出二元一次不等式方程組.求解再比較兩種方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AB的中點(diǎn),E是CD的中點(diǎn), 過(guò)點(diǎn)C作CF//AB交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是邊AD上任意一點(diǎn),BE的垂直平分線FG交對(duì)角AC于點(diǎn)F.求證:(1)BF=DF;(2)BF⊥FE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)計(jì)算: +( )0+|﹣1|;
(2)先化簡(jiǎn),再求值:(x+2)2+x(2﹣x),其中x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AP垂直∠ABC的平分線BP于點(diǎn)P.若△ABC的面積為32cm2,BP=6cm,且△APB的面積是△APC的面積的3倍.則AP=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知x=-1,求x2+3x-1的值;
(2)若|x-4|++(z+27)2=0,求+-的值;
(3)已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣B﹣C﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在BC上,且滿足PA=PB,求此時(shí)t的值;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com