【題目】如圖,ADABC的邊BC上的高,∠B60°,C45°,AC6.求:

(1)AD的長;

(2)ABC的面積.

【答案】1AD3;(2SABC93.

【解析】試題分析:(1)根據(jù)三角形內(nèi)角和可得∠DAC=45°,根據(jù)等角對等邊可得AD=CD,然后再根據(jù)勾股定理可計(jì)算出AD的長;

2)根據(jù)三角形內(nèi)角和可得BAD=30°,再根據(jù)直角三角形的性質(zhì)可得AB=2BD,然后利用勾股定理計(jì)算出BD的長,進(jìn)而可得BC的長,然后利用三角形的面積公式計(jì)算即可.

解:(1)∵∠C45°ADABC的邊BC上的高,∴∠DAC45°ADCD.

AC2AD2CD2622AD2,AD3.

(2)RtADB中,∵∠B60°,∴∠BAD30°AB2BD.

AB2BD2AD2,(2BD)2BD2AD2,BD.

SABCBC·AD (BDDC)·AD×(3)×393.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點(diǎn)B為圓心的扇形與邊CD相切于點(diǎn)E,扇形的圓心角為60°,點(diǎn)E是CD的中點(diǎn),圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:( )÷( ﹣1),其中a是滿足不等組 的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探索。

(1)根據(jù)小明的解答將下列各式因式分解

a2-12a+20;a-1)2-8(a-1)+7; a2-6ab+5b2

(2)根據(jù)小麗的思考解決下列問題:

①說明:代數(shù)式a2-12a+20的最小值為-16.

②請仿照小麗的思考解釋代數(shù)式-(a+1)2+8的最大值為8,并求代數(shù)式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,過等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.

(1)發(fā)現(xiàn):在圖1中, =;

(2)應(yīng)用:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請求出 的值;

(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點(diǎn),若BD⊥CE,請直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點(diǎn),并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結(jié)CD,求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,將矩形ABCD折疊,使得點(diǎn)B落在邊AD上,記為點(diǎn)G,BC的對應(yīng)邊GI與邊CD交于點(diǎn)H,折痕為EF,則AE=時(shí),△EGH為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L1過A(0,2),B(2,0)兩點(diǎn),直線L2:y=mx+b過點(diǎn)C(1,0),且把△AOB分成兩部分,其中靠近原點(diǎn)的那部分是一個(gè)三角形,設(shè)此三角形的面積為S,求S關(guān)于m的函數(shù)解析式,及自變量m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案