【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角有 ;
(2)若∠COD=30°,求∠DOE的度數(shù);
(3)當∠AOD=α°時,請直接寫出∠DOE的度數(shù).
【答案】(1)∠BOE、∠COE;(2)∠DOE=90°;(3)∠DOE=90°.
【解析】
(1)由圖可知∠BOE是與∠AOE互補的角,又由射線OE平分∠BOC可知∠BOE=∠COE,則可知與∠AOE互補的角是∠BOE、∠COE;
(2)由射線OD平分∠AOC可求解出∠AOC的度數(shù),繼而利用互補可求解出∠BOC的度數(shù),再由射線OE分別∠BOC,可求解出∠EOC的度數(shù),則∠DOE=∠COD+∠COE;
(3)由射線OD和射線OE分別平分∠AOC和∠BOC,以及∠AOC和∠BOC互補可知∠DOE=(∠AOC+∠BOC)=×180°=90°.
解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴與∠AOE互補的角是∠BOE、∠COE;
故答案為∠BOE、∠COE;
(2)∵OD、OE分別平分∠AOC、∠BOC,
∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,
∴∠AOC=2×30°=60°,
∴∠BOC=180°﹣60°=120°,
∴∠COE=∠BOC=60°,
∴∠DOE=∠COD+∠COE=90°;
(3)由由射線OD和射線OE分別平分∠AOC和∠BOC分別可得∠AOD=∠COD=∠AOC, ∠BOE=∠COE=∠BOC,則∠DOE=∠COD+∠COE=(∠AOC+∠BOC),再由圖可知∠AOC和∠BOC互補,故∠DOE=(∠AOC+∠BOC)=×180°=90°,與α無關.
故當∠AOD=α°時,∠DOE=90°.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市12000名初中學生的視力情況,該校數(shù)學興趣小組從該市七、八、九年級各隨機抽取了100名學生進行調(diào)查,整理他們的視力情況數(shù)據(jù),得到如下的折線統(tǒng)計圖.
(1)由統(tǒng)計圖可以看出年級越高視力不良率越(填“高”或“低”);
(2)抽取的八年級學生中,視力不良的學生有名;
(3)請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市12000名初中學生中視力不良的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線,在△ABC中,∠B=30°,AD和 DE是△ABC的三分線,點D在 BC 邊上,點E在 AC邊上,且AD=BD,DE=CE,請寫出∠C所有可能的度數(shù)________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,2)是反比例函數(shù)y= 圖象上的一點,連接AO并延長交雙曲線的另一分支于點B,點P是x軸上一動點;若△PAB是等腰三角形,則點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】依法納稅是每個公民應盡的義務.新稅法規(guī)定:居民個人的綜合所得,以每一納稅月收入減去費用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應納稅所得額.已知李先生某月的個人應納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應納稅所得額分別為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,則下列結(jié)論錯誤的是( )
A.EF=2CE
B.S△AEF= S△BCF
C.BF=3CD
D.BC= AE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列代數(shù)式.
(1)設某數(shù)為x,用代數(shù)式表示比某數(shù)的2倍少1的數(shù);
(2)a,b兩數(shù)的平方和減去它們的積的2倍;
(3)某工廠第一年生產(chǎn)a件產(chǎn)品,第二年比第一年增產(chǎn)了20%,則兩年共生產(chǎn)產(chǎn)品的件數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,點E為射線AD上的一個動點,若△ABE與△A′BE關于直線BE對稱,當△A′BC為直角三角形時,AE的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E,那么點D的坐標為()
A.(﹣ , )
B.(﹣ , )
C.(﹣ , )
D.(﹣ , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com