【題目】完成下列證明過程,并在括號中填上理論依據(jù).

如圖,已知ACAE垂足為ABDBF垂足為B,∠1=35°,∠2=35°

證明:ACBD; AEBF

證明:∵∠1=2=35°

ACAE,BDBF

∴∠ =∠ 90°

又∵∠1=2=35°,

∴∠ =

EABF ).

【答案】AC;BD;同位角相等,兩直線平行;EACFBD;EABFBP;同位角相等,兩直線平行.

【解析】

根據(jù)同位角相等,兩直線平行得到ACBD,根據(jù)垂直的定義得到∠EAB=∠FBG,根據(jù)同位角相等,兩直線平行得到AEBF

證明:∵∠1=∠2=35°

∴AC∥BD(同位角相等,兩直線平行)

∵AC⊥AEBD⊥BF,

∴∠EAC∠FBD90°

∵∠1=∠2=35°

∴∠EAB=∠FBP,

∴EA∥BF(同位角相等,兩直線平行)

故答案為:AC;BD;同位角相等,兩直線平行;EAC;FBDEAB;FBP;同位角相等,兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(x1 , y1),(x2 , y2) 在函數(shù)y= - 的圖象上,當(dāng)x1>x2>0時,下列結(jié)論正確的是( )
A.y1>y2>0
B.y1<y2<0
C.y2>y1>0
D.y2<y1<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x-3與反比例函數(shù)y= 的圖象相交于點A(4,n),與x軸相交于點B.

(1)填空:n的值為 , k的值為
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標(biāo);
(3)觀察反比函數(shù)y= 的圖象,當(dāng)y≥-2時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線: 記為 ,它與 軸交于兩點 , ;將 旋轉(zhuǎn) 得到 ,交 軸于 ;將 旋轉(zhuǎn) 得到 ,交 軸于 ;…如此進(jìn)行下去,直至得到 ,若點 在第 段拋物線 上,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市創(chuàng)全國衛(wèi)生城市,某街道積極響應(yīng),決定在街道內(nèi)的所有小區(qū)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買4個垃圾箱比購買5個溫馨提示牌多350元,垃圾箱的單價是溫馨提示牌單價的3倍.

求溫馨提示牌和垃圾箱的單價各是多少元?

如果該街道需購買溫馨提示牌和垃圾箱共3000個.

求購買溫馨提示牌和垃圾箱所需費用與溫馨提示牌的個數(shù)x的函數(shù)關(guān)系式;

若該街道計劃費用不超過35萬元,而且垃圾箱的個數(shù)不少于溫馨提示牌的個數(shù)的倍,求有幾種可供選擇的方案?并找出資金最少的方案,求出最少需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M為正方形ABCDAB的中點,EAB延長線上的一點,MNDM,且交∠CBE的平分線于N

1)求證:MDMN

2)若將上述條件中的“MAB邊的中點改為“MAB邊上任意一點,其余條件不變,則結(jié)論“MDMN”成立嗎?如果成立,請證明;如果不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1x2

22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 是⊙ 的直徑, 是⊙ 上一點,∠ 的平分線交⊙ 于點 ,交⊙ 的切線 于點 ,過點 ,交 的延長線于點

(1)求證: 是⊙ 的切線;
(2)若 .求 值.

查看答案和解析>>

同步練習(xí)冊答案