【題目】如圖,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.

(1)DF∥AC嗎,為什么?

(2)DE與AF的位置關(guān)系又如何?

【答案】試題見(jiàn)解析

【解析】分析:(1)根據(jù)角平分線的性質(zhì)可得∠2=∠BAC,∠1=∠BDF,再有∠1=∠2,可得∠BDF=∠BAC,根據(jù)同位角相等,兩直線平行即可證得結(jié)論;

(2)先根據(jù)DF∥AC可得∠2=∠BAF,再有∠1=∠2可得∠1=∠BAF,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可證得結(jié)論.

解:(1)因?yàn)锳F平分∠BAC,DE平分∠BDF,所以∠2=∠BAC,∠1=∠BDF,又因?yàn)椤?=∠2,所以∠BDF=∠BAC,所以DF∥AC; 

(2)DE∥AF.理由如下:因?yàn)锳F平分∠BAC,所以∠2=∠BAF,又因?yàn)椤?=∠2,所以∠1=∠BAF,所以DE∥AF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一:在RtABC中,∠C=90°AD、BE分別是△ABC中∠A、∠B的平分線,AD、BE交于點(diǎn)F,過(guò)F點(diǎn)做FHADAC于點(diǎn)H,易證:AH+DB=AB;

(1)若將RtABC中∠BAC、∠ABC的內(nèi)角平分線改成外角平分線,即:AFBF分別是∠BAC、∠ABC的外角平分線交于F點(diǎn),FHAF交直線ACH點(diǎn),如圖二:請(qǐng)寫(xiě)出線段AH、BDAB之間的數(shù)量關(guān)系,并證明。

(2)若將RtABC中∠BAC、∠ABC的內(nèi)角平分線改成一個(gè)是外角平分線,即:AF是∠A的內(nèi)角平分線,BE是∠B的外角平分線交于F點(diǎn),FHADAC于點(diǎn)H.如圖三:請(qǐng)寫(xiě)出線段AHBD、AB之間的數(shù)量關(guān)系,無(wú)需證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長(zhǎng)AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)E是BC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是(
A.△AFD≌△DCE
B.AF= ?AD
C.AB=AF
D.BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?

解:a與c平行.

理由:因?yàn)椤?=∠2(_________________),

所以a∥b(_________________).

因?yàn)椤?=∠4(_________________),

所以b∥c(_________________).

所以a∥c(_________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形OAA1B的兩個(gè)頂點(diǎn),以OA1對(duì)角線為邊作正方形OA1A2B1,再以正方形的對(duì)角線OA2作正方形OA1A2B1,…,依此規(guī)律,則點(diǎn)A2017的坐標(biāo)是( 。

A. (0,21008 B. (21008,21008 C. (21009,0) D. (21009,-21009

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF.
(1)根據(jù)題意,補(bǔ)全圖形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的兩邊長(zhǎng)是37,則這個(gè)三角形的周長(zhǎng)等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x=﹣3y1,則2xy+1的值為( 。

A.6B.4C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案