【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點(diǎn)P為射線OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則MNP周長(zhǎng)的最小值為(

A. B. C. D.

【答案】D

【解析】

作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)P2,連結(jié)P1P2,與OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N,則此時(shí)M、N符合題意,求出線段P1P2的長(zhǎng)即可.

作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)P2,連結(jié)P1P2,

OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N

PMN的最小周長(zhǎng)為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長(zhǎng),

連結(jié)OP1、OP2,則OP1=OP2=4,

又∵∠P1OP2=2AOB=60°,

∴△OP1P2是等邊三角形,

P1P2=OP1=4,

PMN的周長(zhǎng)的最小值是4

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接三角形ABC,ACB=90°,AC=2BC,CAB的垂線l交⊙O于另一點(diǎn)D,垂足為E.設(shè)P上異于A,C的一個(gè)動(dòng)點(diǎn),射線APl于點(diǎn)F,連接PCPD,PDAB于點(diǎn)G.

(1)求證:PAC∽△PDF;

(2)AB=5,,PD的長(zhǎng);

(3)在點(diǎn)P運(yùn)動(dòng)過程中,設(shè)=x,tanAFD=y(tǒng),yx之間的函數(shù)關(guān)系式.(不要求寫出x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線,直線與直線、分別相交于、兩點(diǎn),直線與直線、分別相交于、兩點(diǎn),點(diǎn)在直線上運(yùn)動(dòng)(不與兩點(diǎn)重合).

1)如圖1,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),總有:,請(qǐng)說明理由:

2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),、、之間有怎樣的數(shù)量關(guān)系,并說明理由:

3)如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),、、之間又有怎樣的數(shù)量關(guān)系(只需直接給出結(jié)論)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線長(zhǎng)恰好等于這條邊的長(zhǎng),那么稱這個(gè)三角形為“有趣三角形”,這條中線稱為“有趣中線”.已知中,,一條直角邊為3,如果是“有趣三角形”,那么這個(gè)三角形“有趣中線”的長(zhǎng)等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,△ABC的頂點(diǎn)均在格點(diǎn)上. 請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

(1)將△ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫出平移后的△A1B1C1,若△ABC內(nèi)有一點(diǎn)P(m,n),則經(jīng)過上述變換后點(diǎn)P的坐標(biāo)為___ __.

(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A2B2C2

(3) 若將△ABC繞某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,其對(duì)應(yīng)點(diǎn)分別為A3(2,1),B3(4,0),C3(3,-2),則旋轉(zhuǎn)中心坐標(biāo)為___ _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,把下面的推理過程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由:

如圖,已知A、B、C、D在同一直線上,AEDF,AC=BD,∠E=F,求證:BECF.

證明:AEDF(已知)

_________(兩直線平行,內(nèi)錯(cuò)角相等)

AC=BD(已知)

又∵AC=AB+BC,BD=BC+CD

________(等式的性質(zhì))

∵∠E=F(已知)

ABEDCF(___________)

∴∠ABE=DCF(_________________)

ABF+CBE=180°,∠DCF+BCF=180°

∴∠CBE=BCF(__________________)

BECF(________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:(1)當(dāng)線段AB平行于投影面P時(shí),它的正投影是線段A1B1,線段與它的投影的大小關(guān)系為AB

___A1B1;

(2)當(dāng)線段AB傾斜于投影面P時(shí),它的正投影是線段A2B2,線段與它的投影的大小關(guān)系為AB___A2B2;

(3)當(dāng)線段AB垂直于投影面P時(shí),它的正投影是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年“五一節(jié)”前,某商場(chǎng)用60萬元購進(jìn)某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個(gè)A種產(chǎn)品,每個(gè)A產(chǎn)品的成本為12元;每件乙包裝中有100個(gè)B產(chǎn)品,每個(gè)B種產(chǎn)品的成本為14元.商場(chǎng)將A產(chǎn)品標(biāo)價(jià)定為每個(gè)18元,B產(chǎn)品標(biāo)價(jià)定為每個(gè)20元.

(1)甲、乙兩種包裝的產(chǎn)品各有多少件?

(2)“五一節(jié)”商場(chǎng)促銷,將A產(chǎn)品按原定標(biāo)價(jià)打9折銷售,B種產(chǎn)品按原定標(biāo)價(jià)打8.5折銷售,“五一節(jié)”期間該產(chǎn)品全部賣完,該商場(chǎng)銷售該商品共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,點(diǎn)ECD上,點(diǎn)F、GAB上,且AF=FG=BG=DE=CE。以A、B、C、D、E、F、G7個(gè)點(diǎn)中的三個(gè)為頂點(diǎn)的三角形中,面積最小的三角形有_________個(gè),面積最大的三角形有__________個(gè)。

查看答案和解析>>

同步練習(xí)冊(cè)答案