【題目】某校課外興趣小組在本校學(xué)生中開展“感動中國2016年度人物”先進事跡知曉情況專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A,B,C,D四類,其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:
類別 | A | B | C | D |
頻數(shù) | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計圖中類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計該校學(xué)生中類別為D的人數(shù)約為多少?
【答案】
(1)0.3;6
(2)解:類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù)是:360°×0.4=144°
(3)解:根據(jù)題意得:1000×0.06=60(名).
答:該校學(xué)生中類別為D的人數(shù)約為60名
【解析】解:(1)問卷調(diào)查的總?cè)藬?shù)是: =100(名), a= =0.3,b=100×0.06=6(名),
所以答案是:0.3,6;
【考點精析】根據(jù)題目的已知條件,利用全面調(diào)查與抽樣調(diào)查和扇形統(tǒng)計圖的相關(guān)知識可以得到問題的答案,需要掌握全面調(diào)查收集到的數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調(diào)查不宜用全面調(diào)查;抽樣調(diào)查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關(guān)系到對總體估計的準確程度;能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對角線AC,BD交于點O,過點O作OE⊥AD,則OE等于( )
A.
B.2
C.2
D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC邊上的點,連接AE、DE,將△DEC沿線段DE翻折,點C恰好落在線段AE上的點F處.若AB=6,BE : EC=4 : 1,則線段DE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;
(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:AB⊥AC;
(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雖然近幾年無錫市政府加大了太湖水治污力度,但由于大規(guī)模、高強度的經(jīng)濟活動和日益增加的污染負荷,使部分太湖水域水質(zhì)惡化,富營養(yǎng)化不斷加。疄榱吮Wo水資源,我市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:
月用水量(噸) | 單價(元/噸) |
不大于10噸部分 | 1.5 |
大于10噸不大于m噸部分(20≤m≤50) | 2 |
大于m噸部分 | 3 |
(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費;
(2)記該用戶六月份用水量為x噸,繳納水費為y元,試列出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該用戶六月份用水量為40噸,繳納水費y元的取值范圍為70≤y≤90,試求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠B=70°,∠C=40°,求∠DAE的度數(shù).
(2)若∠B﹣∠C=30°,則∠DAE= .
(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度數(shù)(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點D,E,F(xiàn)分別是邊AB,BC,AC的中點,點M是射線EC上的一個動點,作等邊△DMN,使△DMN與△ABC在BC邊同側(cè),連接NF.
(1)如圖1,當(dāng)點M與點C重合時,直接寫出線段FN與線段EM的數(shù)量關(guān)系;
(2)當(dāng)點M在線段EC上(點M與點E,C不重合)時,在圖2中依題意補全圖形,并判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)連接DF,直線DM與直線AC相交于點G,若△DNF的面積是△GMC面積的9倍,AB=8,請直接寫出線段CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是AB的中垂線,垂足為D,DE⊥AC于點E,DF⊥BC于點F.
(1)求證:DE=DF;
(2)若線段CE的長為3 cm,BC的長為4 cm,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com