【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點DAB上,AD=AC,AF⊥CDCD于點E,交CB于點F,則CF的長是________________.

【答案】1.5

【解析】

連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF =∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.

連接DF,如圖所示:

Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,

∵AD=AC=3,AF⊥CD,

∴∠CAF =∠DAF,BD=AB-AD=2,

在△ADF和△ACF中,

∴△ADF≌△ACF(SAS),

∴∠ADF=∠ACF=90°,CF=DF,

∴∠BDF=90°,

設(shè)CF=DF=x,則BF=4-x,

Rt△BDF中,由勾股定理得:DF2+BD2=BF2

x2+22=(4-x)2,

解得:x=1.5;

∴CF=1.5;

故答案為:1.5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,平行四邊形ABOC的對角線交于點M,雙曲線y= (x<0)經(jīng)過點B、M.若平行四邊形ABOC的面積為12,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩建筑物的水平距離BC為18m,從A點測得D點的俯角α為30°,測得C點的俯角β為60°.則建筑物CD的高度為m(結(jié)果不作近似計算).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在⊙O中, = ,弦AB與弦AC交于點A,弦CD與AB交于點F,連接BC.
(1)求證:AC2=ABAF;
(2)若⊙O的半徑長為2cm,∠B=60°,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小強從熱氣球上測量一棟高樓頂部的傾角為30°,測量這棟高樓底部的俯角為60°,熱氣球與高樓的水平距離為45米,則這棟高樓高為多少(單位:米)( )

A.15
B.30
C.45
D.60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正三角形中,將其內(nèi)切圓和三個角切圓(與角兩邊及三角形內(nèi)切圓都相切的圓)的內(nèi)部挖去,則此三角形剩下部分(陰影部分)的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線AB與⊙O相切于B點,C是⊙O與OA的交點,點D是⊙O上的動點(D與B,C不重合),若∠A=40°,則∠BDC的度數(shù)是(  )
A.25°或155°
B.50°或155°
C.25°或130°
D.50°或130°

查看答案和解析>>

同步練習冊答案