在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答.

(1)把△ABC繞點P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.
(1)作圖見解析;(2)作圖見解析;(3)(2.5,0).

試題分析:(1)、(2)無論是何種變換都需先找出各關鍵點的對應點,然后順次連接即可.
(3)利用觀察對應點的連線即可求解.
試題解析:(1)(2)如圖:

(3)由圖可知,P'(2.5,0).
考點: 1.作圖-旋轉(zhuǎn)變換;2.作圖-平移變換.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關于點C成中心對稱的△A1B1C1;
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2;
(3)在x軸上求作一點P,使PA1+PC2的值最小,點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

認真觀察圖1的4個圖中陰影部分構(gòu)成的圖案,回答下列問題:
      
(1)請寫出這四個圖案都具有的兩個共同特征.
特征1:                             ;特征2:                             
(2)請在圖2中設計出你心中的圖案,使它也具備你所寫出的上述兩個特征.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD的中點.

(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

…依次觀察這三個圖形,并判斷照此規(guī)律從左向右的第四個圖形是(   )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把一副三角板如圖(1)放置,其中,,,斜邊.把三角板繞著點C順時針旋轉(zhuǎn)得到△(如圖2),此時AB與交于點O,則線段的長度為(     )
A.B.C.D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,,把這個直角三角形繞頂點C旋轉(zhuǎn)后得到Rt△A'B'C,其中點B' 正好落在AB上,A'B'與AC相交于點D,那么    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A'B'C。若∠A=40°,∠B'=110°,則∠BCA'的度數(shù)是(   )

A.110°           B.80°            C.40°          D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

要測量河兩岸相對的兩點的距離,先在的垂線上取兩點,使,再作出的垂線,使在一條直線上(如圖所示),可以說明△≌△,得,因此測得的長就是的長,判定△≌△最恰當?shù)睦碛墒牵ā 。?br />
A.邊角邊B.角邊角
C.邊邊邊D.邊邊角

查看答案和解析>>

同步練習冊答案