【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線與x軸交于另一點(diǎn),在第一象限內(nèi)與直線交于點(diǎn).
求這條拋物線的表達(dá)式;
在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
如圖2,若點(diǎn)M在這條拋物線上,且,
求點(diǎn)M的坐標(biāo);
在的條件下,是否存在點(diǎn)P,使得∽?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線解析式為;(2);(3);存在滿足條件的點(diǎn)P,其坐標(biāo)為或
【解析】
由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;
過C作軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長(zhǎng),從而可表示出的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);
(3)①設(shè)MB交y軸于點(diǎn)N,則可證得≌,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo);
②過M作軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長(zhǎng),由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過P作軸于點(diǎn)H,由條件可證得∽,由的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).
解:在直線上,
,
,
把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得,
解得,
拋物線解析式為;
如圖1,過C作軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作于點(diǎn)F,
點(diǎn)C是拋物線上第四象限的點(diǎn),
可設(shè),則,,
,,,
,
的面積為2,
,解得,
;
(3)①設(shè)MB交y軸于點(diǎn)N,如圖2,
,
,
在和中,
,
≌,
,
,
可設(shè)直線BN解析式為,
把B點(diǎn)坐標(biāo)代入可得,解得,
直線BN的解析式為,
聯(lián)立直線BN和拋物線解析式可得,
解得或,
,
②,
,且,
,,
∽,
,,
當(dāng)點(diǎn)P在第一象限時(shí),如圖3,過M作軸于點(diǎn)G,過P作軸于點(diǎn)H,
,
,且,
∽,
,
,
,,
,,
;
當(dāng)點(diǎn)P在第三象限時(shí),如圖4,過M作軸于點(diǎn)G,過P作軸于點(diǎn)H,
同理可求得,,
;
綜上可知存在滿足條件的點(diǎn)P,其坐標(biāo)為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一片水田,某村民小組需計(jì)算其面積,測(cè)得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請(qǐng)你計(jì)算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,,CD為AB邊上中線,E是CB邊上的一個(gè)動(dòng)點(diǎn).
Ⅰ求CD的長(zhǎng);
Ⅱ如圖1,連接AE,交CD于點(diǎn)F,當(dāng)AE平分時(shí),求CE,CF的長(zhǎng);
Ⅲ如圖2,連接DE,將沿DE翻折至,連接BG,直接寫出和間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,AB是的直徑,且,點(diǎn)M為外一點(diǎn),且MA,MC分別切于點(diǎn)A、C兩點(diǎn)與AM的延長(zhǎng)線交于點(diǎn)D.
求證:;
填空
當(dāng)______時(shí),四邊形AOCM是正方形.
當(dāng)______時(shí),為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
(問題情境)
教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?
(探索新知)
從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積 + 4個(gè)直角三角形的面積,從而得數(shù)學(xué)等式: ;(用含字母a、b、c的式子表示)化簡(jiǎn)證得勾股定理:
(初步運(yùn)用)
(1)如圖1,若b=2a ,則小正方形面積:大正方形面積= ;
(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a= 4,b= 6此時(shí)空白部分的面積為 ;
(遷移運(yùn)用)
如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.
知識(shí)補(bǔ)充:如圖4,含60°的直角三角形,對(duì)邊y :斜邊x=定值k
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)O是AB邊上一點(diǎn),以O為圓心作⊙O且經(jīng)過A,D兩點(diǎn),交AB于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)AC=2,AB=6,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,,,繞點(diǎn)C旋轉(zhuǎn),角的兩邊分別與AB、AD交于點(diǎn)E、F,同時(shí)也分別與DA、BA的延長(zhǎng)線交于點(diǎn)G、H.
如圖1,若.
求證:≌;
在繞點(diǎn)C旋轉(zhuǎn)的過程中,線段AC、AG、AH之間存在著怎樣的數(shù)量關(guān)系?并說明理由.
如圖2,若,經(jīng)探究得的值為常數(shù)k,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( 。
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com