【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線x軸交于另一點(diǎn),在第一象限內(nèi)與直線交于點(diǎn)

求這條拋物線的表達(dá)式;

在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

如圖2,若點(diǎn)M在這條拋物線上,且,

求點(diǎn)M的坐標(biāo);

的條件下,是否存在點(diǎn)P,使得?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)拋物線解析式為;(2);(3)存在滿足條件的點(diǎn)P,其坐標(biāo)為

【解析】

由直線解析式可求得B點(diǎn)坐標(biāo),由AB坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;

C軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長(zhǎng),從而可表示出的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);

(3)①設(shè)MBy軸于點(diǎn)N,則可證得,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo);

M軸于點(diǎn)G,由BC的坐標(biāo)可求得OBOC的長(zhǎng),由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過P軸于點(diǎn)H,由條件可證得,由的值,可求得PHOH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).

解:在直線上,

,

A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得

解得

拋物線解析式為;

如圖1,過C軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B于點(diǎn)F,

點(diǎn)C是拋物線上第四象限的點(diǎn),

可設(shè),則,,

,,

,

的面積為2,

,解得

;

(3)①設(shè)MBy軸于點(diǎn)N,如圖2,

,

中,

,

,

可設(shè)直線BN解析式為,

B點(diǎn)坐標(biāo)代入可得,解得,

直線BN的解析式為,

聯(lián)立直線BN和拋物線解析式可得,

解得,

,

,

,且

,

,

,,

當(dāng)點(diǎn)P在第一象限時(shí),如圖3,過M軸于點(diǎn)G,過P軸于點(diǎn)H,

,

,且

,

,

,

,

;

當(dāng)點(diǎn)P在第三象限時(shí),如圖4,過M軸于點(diǎn)G,過P軸于點(diǎn)H,

同理可求得,,

;

綜上可知存在滿足條件的點(diǎn)P,其坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一片水田,某村民小組需計(jì)算其面積,測(cè)得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請(qǐng)你計(jì)算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,,CDAB邊上中線,ECB邊上的一個(gè)動(dòng)點(diǎn).

CD的長(zhǎng);

如圖1,連接AE,交CD于點(diǎn)F,當(dāng)AE平分時(shí),求CE,CF的長(zhǎng);

如圖2,連接DE,將沿DE翻折至,連接BG,直接寫出間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,AB的直徑,且,點(diǎn)M外一點(diǎn),且MA,MC分別切于點(diǎn)A、C兩點(diǎn)AM的延長(zhǎng)線交于點(diǎn)D.

求證:;

填空

當(dāng)______時(shí),四邊形AOCM是正方形.

當(dāng)______時(shí),為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

(問題情境)

教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?

(探索新知)

從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積 + 4個(gè)直角三角形的面積,從而得數(shù)學(xué)等式: ;(用含字母a、b、c的式子表示)化簡(jiǎn)證得勾股定理:

(初步運(yùn)用)

1)如圖1,若b=2a ,則小正方形面積:大正方形面積=

2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a= 4,b= 6此時(shí)空白部分的面積為 ;

(遷移運(yùn)用)

如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊ab、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.

知識(shí)補(bǔ)充:如圖4,含60°的直角三角形,對(duì)邊y :斜邊x=定值k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABCACB=90°,AD平分∠BACBC于點(diǎn)D點(diǎn)OAB邊上一點(diǎn),O為圓心作⊙O且經(jīng)過A,D兩點(diǎn),AB于點(diǎn)E

1)求證BC是⊙O的切線

2AC=2,AB=6,BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,,,繞點(diǎn)C旋轉(zhuǎn),角的兩邊分別與AB、AD交于點(diǎn)E、F,同時(shí)也分別與DA、BA的延長(zhǎng)線交于點(diǎn)G、H.

如圖1,若

求證:

繞點(diǎn)C旋轉(zhuǎn)的過程中,線段AC、AG、AH之間存在著怎樣的數(shù)量關(guān)系?并說明理由.

如圖2,若,經(jīng)探究得的值為常數(shù)k,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

同步練習(xí)冊(cè)答案