【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點P,Q,R分別在AB,BC,CA邊上同時開始作勻速運動,2秒后三個點同時停止運動,點P由點A出發(fā)以每秒3個單位的速度向點B運動,點Q由點B出發(fā)以每秒5個單位的速度向點C運動,點R由點C出發(fā)以每秒4個單位的速度向點A運動,在運動過程中:
(1)求證:△APR,△BPQ,△CQR的面積相等;
(2)求△PQR面積的最小值;
(3)用t(秒)(0≤t≤2)表示運動時間,是否存在t,使∠PQR=90°?若存在,請直接寫出t的值;若不存在,請說明理由.
【答案】
(1)解:如圖,在Rt△ABC中,AB=6,AC=8,根據(jù)勾股定理得,BC=10,tan∠B= = = ,
過點Q作QE⊥AB于E,
在Rt△BQE中,BQ=5t,
∴sin∠B= = ,
∴QE=4t,
過點Q作QD⊥AC于D,
在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,
∴QD=CQsin∠C= (10﹣5t)=3(2﹣t),
由運動知,AP=3t,CR=4t,
∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),
∴S△APR= APAR= ×3t×4(2﹣t)=6t(2﹣t),
S△BPQ= BPQE= ×3(2﹣t)×4t=6t(2﹣t),
S△CQR= CRQD= ×4t×3(2﹣t)=6t(2﹣t),
∴S△APR=S△BPQ=S△CQR,
∴△APR,△BPQ,△CQR的面積相等;
(2)解:由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),
∵AB=6,AC=8,
∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)
= ×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,
∵0≤t≤2,
∴當(dāng)t=1時,S△PQR最小=6;
(3)解:存在,由點P,Q,R的運動速度知,運動1秒時,點P,Q,R分別在AB,BC,AC的中點,此時,四邊形APQR是矩形,即:t=1秒時,∠PQR=90°,
由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),
∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),
過點Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,
∴四邊形APQD是矩形,
∴AE=DQ=3(2﹣t),AD=QE=4t,
∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=4|2t﹣2|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=3|2t﹣2|
∵∠DQE=90°,∠PQR=90°,
∴∠DQR=∠EQP,
∴tan∠DQR=tan∠EQP,
在Rt△DQR中,tan∠DQR= = ,
在Rt△EQP中,tan∠EQP= = ,
∴ ,
∴16t=9(2﹣t),
∴t= .
即:t=1或 秒時,∠PQR=90°.
【解析】(1)由面積公式可知求三角形的面積,缺高時,須作垂線補(bǔ)出高,用t的代數(shù)式表示△APR,△BPQ,△CQR的面積,在由斜邊表示直角邊時選用正弦;(2)用△ABC面積減去第(1)問中表示的△APR的面積的3倍,構(gòu)建二次函數(shù),在0≤t≤2范圍內(nèi)由二次函數(shù)的性質(zhì)可求最值;(3)由點P,Q,R的運動速度知,36=,510=,運動1秒時,點P,Q,R分別在AB,BC,AC的中點,可證得四邊形APQD是矩形,∠PQR=90°;若∠PQR=90,則∠DQR=∠EQP,用t的代數(shù)式表示兩個角的正切,建立方程,求出t.
【考點精析】通過靈活運用二次函數(shù)的最值和銳角三角函數(shù)的定義,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)b,C點表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù)______表示的點重合;
(3)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數(shù)式表示).
(4)直接寫出點B為AC中點時的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動.首次用2000元在商店購進(jìn)一批學(xué)生書包,活動進(jìn)行后發(fā)現(xiàn)書包數(shù)量不夠,又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進(jìn)書包的單價是多少?
(2)商店兩批書包每個的進(jìn)價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點O(如圖),則圖中全等三角形的對數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A89=( )
A.(6,7)
B.(7,8)
C.(7,9)
D.(6,9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用相同的小正方形按照某種規(guī)律進(jìn)行擺放,則第8個圖形中小正方形的個數(shù)是( )
A.71
B.78
C.85
D.89
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)解不等式﹣x+1<7x﹣3;
(2)解不等式;
(3)解不等式,并把它的解集表示在數(shù)軸上.
(4)已知關(guān)于x的不等式組,恰好有兩個整數(shù)解,試確定實數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(不與頂點 A 重合),則∠BPC 的度數(shù)可能是
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,共頂點的兩個三角形△ABC,△AB′C′,若 AB=AB′,AC=AC′,且∠BAC+∠B′AC′=180°,我們稱△ABC 與△AB′C′互為“頂補(bǔ)三角形”.
(1)已知△ABC 與△ADE 互為“頂補(bǔ)三角形”,AF 是△ABC 的中線.
①如圖 2,若△ADE 為等邊三角形時,求證:DE=2AF;
②如圖 3,若△ADE 為任意三角形時,上述結(jié)論是否仍然成立?請說明理由.
(2)如圖4,四邊形 ABCD 中,∠B+∠C=90°.在平面內(nèi)是否存在點 P,使△PAD 與△PBC 互為“頂補(bǔ)三角形”, 若存在,請畫出圖形,并證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com