【題目】解方程(按要求方法解方程,否則不得分,沒有要求的請(qǐng)用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

1(直接開方法) 2(配方法)

3(公式法) 4(因式分解法)

5 6

【答案】1;(2,;(3, 4,;(5;(6

【解析】

1)用直接開平方法解答即可;

2)用配方法解答即可;

3)化為一般形式,用公式法解答即可;

4)移項(xiàng)后用因式分解法解答即可;

5)用因式分解法解答即可;

6)去分母化為整式方程,求解即可.

1x-2=±3,∴x=2±3,∴;

2,,∴,∴;

3)整理得:,a=3,b=2c=6,∴△==760,∴x=,∴,;

4,,∴(3x+2)(x2=0,∴,;

5,∴,;

6)兩邊同乘以(x-2)得:2x+2=x2,移項(xiàng)得:2xx=22,合并同類項(xiàng)得:x=4.經(jīng)檢驗(yàn):x=4是原方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書法大賽,請(qǐng)通過列表或畫樹狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN

(1)如圖,當(dāng)0°<α<45°時(shí):

①依題意補(bǔ)全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)的中點(diǎn),的弦,且,垂足為,連接于點(diǎn),連接,

(1)求證:;

(2),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,函數(shù)的圖象與軸有個(gè)交點(diǎn),函數(shù)的圖象與軸有個(gè)交點(diǎn),則的數(shù)量關(guān)系是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是作已知三角形的高的尺規(guī)作圖過程.

已知: .

求作: 邊上的高

作法:如圖,

(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于, 兩點(diǎn);

(2)作直線,交于點(diǎn);

(3)為圓心, 為半徑⊙O,CB的延長(zhǎng)線交于點(diǎn)D,連接AD,線段AD即為所作的高.

請(qǐng)回答;該尺規(guī)作圖的依據(jù)是___________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在教學(xué)樓的窗戶A處,測(cè)量樓前的一棵樹CD的高.現(xiàn)測(cè)得樹頂C處的俯角為45°,樹底D處的俯角為60°,樓底到大樹的距離BD10米.請(qǐng)你幫助小明計(jì)算樹的高度(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,

的取值范圍.

是否存在實(shí)數(shù),使方程的兩實(shí)數(shù)根互為相反數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案