【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊△ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線y= 上運(yùn)動(dòng),則k的值是

【答案】﹣3
【解析】解:設(shè)A(a, ),

∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),

∴OA=OB,

∵△ABC為等邊三角形,

∴AB⊥OC,OC= AO,

∵AO=

∴CO= ,

如圖,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則可得∠AOD=∠OCD(都是∠COD的余角),

設(shè)點(diǎn)C的坐標(biāo)為(x,y),則tan∠AOD=tan∠OCD,

= ,

解得y=﹣ a2x.

在Rt△COD中,CD2+OD2=OC2,

即y2+x2=3a2+ ,

將y=﹣ a2x代入,可得:

x2= ,

故x= ,y=﹣ a,

則xy=﹣3 ,即k=﹣3

所以答案是:﹣3

【考點(diǎn)精析】利用反比例函數(shù)的性質(zhì)和等邊三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大;等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連結(jié)BF.

(1)求證:①△EAF≌△EDC;
②D是BC的中點(diǎn);
(2)若AB=AC,求證:四邊形AFBD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等邊三角形,

如圖1,點(diǎn)EBC上一點(diǎn),點(diǎn)FAC上一點(diǎn),且,連接AE,BF交于點(diǎn)G,求的度數(shù);

如圖2,點(diǎn)MBC延長(zhǎng)線上一點(diǎn),,MN的外角平分線于點(diǎn)N,求的值;

如圖3,過(guò)點(diǎn)A于點(diǎn)D,點(diǎn)P是直線AD上一點(diǎn),以CP為邊,在CP的下方作等邊,連DQ,則DQ的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=7,EF=3,則BC長(zhǎng)為( )

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】穿越青海境內(nèi)的蘭新高速鐵路正在加緊施工.某工程隊(duì)承包了一段全長(zhǎng)1957米的隧道工程,甲、乙兩個(gè)班組分別從南北兩端同時(shí)掘進(jìn),已知甲組比乙組每天多掘進(jìn)0.5米,經(jīng)過(guò)6天施工,甲、乙兩組共掘進(jìn)57米.

(1)求甲乙兩班組平均每天各掘進(jìn)多少米?

(2)為加快工程進(jìn)度,通過(guò)改進(jìn)施工技術(shù),在剩余的工程中,甲組平均每天比原來(lái)多掘進(jìn)0.3米,乙組平均每天比原來(lái)多掘進(jìn)0.2米.按此施工進(jìn)度,能夠比原來(lái)少用多少天完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)代數(shù)式 ,并判斷當(dāng)x滿(mǎn)足不等式組 時(shí)該代數(shù)式的符號(hào).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長(zhǎng)線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF.
(2)連接GB,EF,求證:GB∥EF.
(3)若AE=1,EB=3,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折線ABCDE描述了一輛汽車(chē)在某一直線上行駛過(guò)程中,汽車(chē)離出發(fā)地的距離y(km)和行駛時(shí)間x(h)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說(shuō)法:汽車(chē)共行駛了120km;汽車(chē)在行駛途中停留了0.5h;汽車(chē)在整個(gè)行駛過(guò)程中的平均速度為km/h;汽車(chē)自出發(fā)后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說(shuō)法是 .(填上所有正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.

(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案