【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象相交于A(2,3),B(-3,m)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;
(3)過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,求S△ABC.
【答案】(1)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+1;(2)-3<x<0或x>2;(3)5.
【解析】
(1)先把A點(diǎn)坐標(biāo)代入y=可求出n的值,從而確定反比例函數(shù)解析式;再把B(-3,m)代入反比例函數(shù)解析式求出m的值,然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)觀察函數(shù)圖象得到,當(dāng)-3<x<0或x>2時(shí),一次函數(shù)圖象在反比例函數(shù)圖象上方;
(3)先確定直線(xiàn)y=x+1與x軸交點(diǎn)D的坐標(biāo)和C點(diǎn)坐標(biāo),然后利用S△ABC=S△DBC+S△ADC進(jìn)行計(jì)算.
(1)把A(2,3)代入y=得n=2×3=6,
所以反比例函數(shù)解析式為y=,
把B(-3,m)代入y=得-3m=6,解得m=-2,則B點(diǎn)坐標(biāo)為(-3,-2),
把A(2,3)、B(-3,-2)代入y=kx+b得
,解得,
所以一次函數(shù)解析式為y=x+1;
(2)不等式kx+b>的解集為-3<x<0或x>2;
(3)如圖,直線(xiàn)y=x+1與x軸交點(diǎn)為D,則D(-1,0),
因?yàn)?/span>BC⊥x軸,
所以C點(diǎn)坐標(biāo)為(-3,0),
所以S△ABC=S△DBC+S△ADC=×2×2+×2×3=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)某班開(kāi)展數(shù)學(xué)活動(dòng),小明和小軍合作用一副三角板測(cè)量學(xué)校的旗桿,小明站在B點(diǎn)測(cè)得旗桿頂端E點(diǎn)的仰角為45°,小軍站在D點(diǎn)測(cè)得旗桿頂端E點(diǎn)的仰角為30°.已知小明和小軍的距離BD=6 m,小明的身高AB=1.5 m,小軍的身高CD=1.75 m,求旗桿的高EF.(結(jié)果精確到0.1,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】襄陽(yáng)市精準(zhǔn)扶貧工作已進(jìn)入攻堅(jiān)階段.貧困戶(hù)張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍(lán)莓,今年正式上市銷(xiāo)售.在銷(xiāo)售的30天中,第一天賣(mài)出20千克,為了擴(kuò)大銷(xiāo)量,采取了降價(jià)措施,以后每天比前一天多賣(mài)出4千克.第x天的售價(jià)為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價(jià)為32元/千克,第26天的售價(jià)為25元/千克.已知種植銷(xiāo)售藍(lán)莓的成木是18元/千克,每天的利潤(rùn)是W元(利潤(rùn)=銷(xiāo)售收入﹣成本).
(1)m= ,n= ;
(2)求銷(xiāo)售藍(lán)莓第幾天時(shí),當(dāng)天的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)在銷(xiāo)售藍(lán)莓的30天中,當(dāng)天利潤(rùn)不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)矩形的對(duì)稱(chēng)中點(diǎn)E,且與邊BC交于點(diǎn)D,若過(guò)點(diǎn)D的直線(xiàn)y=mx+n將矩形OABC的面積分成3:5的兩部分,則此直線(xiàn)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCO在平面直角坐標(biāo)系中,AO,CO分別在y軸,x軸正半軸上,若S矩形AOCB=BO2,矩形AOCB的周長(zhǎng)為16.
(1)求B點(diǎn)坐標(biāo);
(2)點(diǎn)D在OC延長(zhǎng)線(xiàn)上,設(shè)D點(diǎn)橫坐標(biāo)為d,連BD,將直線(xiàn)DB繞D點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)45°交AO于E,交BC于F,連EC,設(shè)△CDE面積=S,求出S與d的函數(shù)關(guān)系式并注明自變量d的取值范圍;
(3)在(2)條件下,當(dāng)點(diǎn)E在AO上時(shí),過(guò)A作ED的平行線(xiàn)交CB于G,交BD于N,若BG=2CF,求S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),以長(zhǎng)為半徑的與邊的另一個(gè)交點(diǎn)為,過(guò)點(diǎn)作于點(diǎn).
當(dāng)與邊相切時(shí),求的半徑;
聯(lián)結(jié)交于點(diǎn),設(shè)的長(zhǎng)為,的長(zhǎng)為,求關(guān)于的函數(shù)解析式,并直接寫(xiě)出的取值范圍;
在的條件下,當(dāng)以長(zhǎng)為直徑的與相交于邊上的點(diǎn)時(shí),求相交所得的公共弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在多項(xiàng)式的乘法公式中,完全平方公式是其中重要的一個(gè).
(1)請(qǐng)補(bǔ)全完全平方公式的推導(dǎo)過(guò)程:
,
,
.
(2)如圖,將邊長(zhǎng)為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請(qǐng)你結(jié)合圖給出完全平方公式的幾何解釋.
(3)用完全平方公式求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線(xiàn)上一點(diǎn),射線(xiàn)AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過(guò)的角度記作a;設(shè)半圓O的半徑為R,AM的長(zhǎng)度為m,回答下列問(wèn)題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線(xiàn)AB的距離是 ;如圖2,當(dāng)a= °時(shí),半圓O與射線(xiàn)AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線(xiàn)AB相切,在保持線(xiàn)段AM長(zhǎng)度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿(mǎn)足要求的R,并說(shuō)明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線(xiàn)AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫(xiě)出這個(gè)關(guān)系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線(xiàn)與射線(xiàn)AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是 ,并求出在這個(gè)變化過(guò)程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com