【題目】在平面直角坐標(biāo)系中,將一個(gè)點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫做這個(gè)點(diǎn)的“互換點(diǎn)”,如(-3,5)與(5,-3)是一對(duì)“互換點(diǎn)”。
(1)任意一對(duì)“互換點(diǎn)”________(填“都能”或“都不能”)在一個(gè)反比例函數(shù)的圖象上;
(2)M、N是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(2,-5),求直線MN的表達(dá)式;
(3)在拋物線的圖象上有一對(duì)“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過(guò)點(diǎn)P(,),求此拋物線的表達(dá)式.
【答案】(1)不一定;(2)y=-x-3;(3).
【解析】
(1)設(shè)這一對(duì)“互換點(diǎn)”的坐標(biāo)為(a,b)和(b,a).①當(dāng)ab=0時(shí),它們不可能在反比例函數(shù)的圖象上,②當(dāng)ab≠0時(shí),由b=可得a=,于是得到結(jié)論;
(2)把M(2,-5),N(-5,2)代入y=cx+d,即可得到結(jié)論;
(3)設(shè)點(diǎn)A(p,q),則q=,由直線AB經(jīng)過(guò)點(diǎn)P(,),得到p+q=1,得到q=-1或q=2,將這一對(duì)“互換點(diǎn)”代入y=x2+bx+c得,于是得到結(jié)論.
(1)不一定,
設(shè)這一對(duì)“互換點(diǎn)”的坐標(biāo)為(a,b)和(b,a).
①當(dāng)ab=0時(shí),它們不可能在反比例函數(shù)的圖象上,
②當(dāng)ab≠0時(shí),由b=可得a=,即(a,b)和(b,a)都在反比例函數(shù)y=(k≠0)的圖象上;
(2)由M(2,-5)得N(-5,2),設(shè)直線MN的表達(dá)式為y=cx+d(c≠0).
則有
解得,,
∴直線MN的表達(dá)式為y=-x-3;
(3)設(shè)點(diǎn)A(p,q),則q=,
∵直線AB經(jīng)過(guò)點(diǎn)P(,),由(2)得=+p+q,
∴p+q=1,
∴p=1,
解并檢驗(yàn)得:p=2或p=-1,
∴q=-1或q=2,
∴這一對(duì)“互換點(diǎn)”是(2,-1)和(-1,2),
將這一對(duì)“互換點(diǎn)”代入y=x2+bx+c得,
∴,解得,
∴此拋物線的表達(dá)式為y=x2-2x-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知,,且,.
(1)求證:;
(2)如圖2,若,,折疊紙片,使點(diǎn)與點(diǎn)重合,折痕為,且.
①求證:;
②點(diǎn)是線段上一點(diǎn),連接,一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止,點(diǎn)在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少多少秒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,連結(jié)AE、BF.則AE與BF是什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩班舉行班際電腦漢字輸入比賽,各選10名選手參賽,各班參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)統(tǒng)計(jì)如下表:
通過(guò)計(jì)算可知兩組數(shù)據(jù)的方差分別為S2甲=2.0,S2乙=2.7,則下列說(shuō)法:①兩組數(shù)據(jù)的平均數(shù)相同;②甲組學(xué)生比乙組學(xué)生的成績(jī)穩(wěn)定;③兩組學(xué)生成績(jī)的中位數(shù)相同;④兩組學(xué)生成績(jī)的眾數(shù)相同.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有女生1200人,估計(jì)為“優(yōu)秀”等級(jí)的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與,軸分別相交于點(diǎn)、,與直線交于點(diǎn),直線交軸于點(diǎn),交軸于點(diǎn).
(1)若點(diǎn)是軸上一動(dòng)點(diǎn),連接、,求當(dāng)取最大值時(shí),點(diǎn)的坐標(biāo);
(2)在(1)問(wèn)的條件下,將沿軸平移,在平移的過(guò)程中,直線交直線于點(diǎn),則當(dāng)是等腰三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AE平分∠BAC,點(diǎn)D是AE上一點(diǎn),連接BD,CD.請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使△ABD≌△ACD.添加的條件是:____.(寫出一個(gè)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com