【題目】下列計(jì)算正確的是( 。

A.32aaB.a2a3a6

C.a23a6D.﹣(a1)=﹣a1

【答案】C

【解析】

此題選擇計(jì)算類的,主要利用冪的乘方,同底冪相乘的法則計(jì)算即可.

解:A,3-2a,不是同類項(xiàng),無法合并,故此選項(xiàng)錯(cuò)誤;

B,a2a3a5,故此選項(xiàng)錯(cuò)誤;

C,(a23a6,正確;

D,﹣(a1)=﹣a+1,故此選項(xiàng)錯(cuò)誤;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BM=DF,AF垂直AM,M,B,C在一條直線上,且△AEM與△AEF恰好關(guān)于AE所在直線成軸對稱,已知EF=x,正方形邊長為y.
(1)圖中△ADF可以繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)°后能與△重合;
(2)用x、y的代數(shù)式表示△AEM與△EFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球繞太陽公轉(zhuǎn)的速度約為110000km/h,則110000用科學(xué)記數(shù)法可表示為(
A.0.11×106
B.1.1×105
C.0.11×105
D.1.1×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為﹣10,B點(diǎn)對應(yīng)的數(shù)為70

(1)請寫出AB的中點(diǎn)M對應(yīng)的數(shù)
(2)現(xiàn)在有一只電子螞蟻P從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2個(gè)單位/秒的速度向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請你求出C點(diǎn)對應(yīng)的數(shù)
(3)若當(dāng)電子螞蟻P從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2單位/秒的速度向左運(yùn)動(dòng),經(jīng)過多長時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長度,并寫出此時(shí)P點(diǎn)對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 ,二次函數(shù) 的圖象為下列四個(gè)圖象之一,試根據(jù)圖象分析a的值應(yīng)等于( ).

A.-2
B.-1
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;

(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為ACG內(nèi)一點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊APR,等邊AGQ,連接QR

①求證:PG=RQ;

②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AE與CD相交于點(diǎn)B,∠DBE=50°,BF⊥AE,求∠CBF和∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|a+5|+(b﹣4)2=0,則(a+b)2016=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線a∥b,∠3=131°,求∠1、∠2的度數(shù)(填理由或數(shù)學(xué)式)
解:∵∠3=131° (
又∵∠3=∠1 (
∴∠1=
∵a∥b (
∴∠1+∠2=180° (
∴∠2= ).

查看答案和解析>>

同步練習(xí)冊答案