【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).
【答案】(1)①135°;②40°;(2)∠ACB+∠DCE=180°,理由見解析;(3)30°、45°.
【解析】
(1)①根據(jù)直角三角板的性質(zhì)結合∠DCB=45°即可得出∠ACB的度數(shù);
②由∠ACB=140°,∠ECB=90°,可得出∠ACE的度數(shù),進而得出∠DCE的度數(shù);
(2)根據(jù)①中的結論可提出猜想,再由∠ACB=∠ACD+∠DCB,∠ACB+∠DCE=90°+∠DCB+∠DCE可得出結論;
(3)分CB∥AD、EB∥AC兩種情況進行討論即可.
(1)①∵∠DCB=45°,∠ACD=90°,
∴∠ACB=∠DCB+∠ACD=45°+90°=135°,
故答案為:135°;
②∵∠ACB=140°,∠ECB=90°,
∴∠ACE=140°﹣90°=50°,
∴∠DCE=90°﹣∠ACE=90°﹣50°=40°,
故答案為:40°;
(2)猜想:∠ACB+∠DCE=180°,
理由如下:∵∠ACE=90°﹣∠DCE,
又∵∠ACB=∠ACE+90°,
∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE,
即∠ACB+∠DCE=180°;
(3)30°、45°.
理由:當CB∥AD時(如圖1),
∴∠AFC=∠FCB=90°,
∵∠A=60°,
∴∠ACE=90°-∠A=30°;
當EB∥AC時(如圖2),
∴∠ACE=∠E=45°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以A、B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M、N;②作直線MN交AC于點D,連接BD.若CD=CB,∠A=35°,則∠C等于( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上的一點且GH⊥EG.求證:PF∥GH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條射線AM∥BN,線段CD的兩個端點C、D分別在射線BN、AM上,且∠A=∠BCD=108°.E是線段AD上一點(不與點A、D重合),且BD平分∠EBC.
(1)求∠ABC的度數(shù).
(2)請在圖中找出與∠ABC相等的角,并說明理由.
(3)若平行移動CD,且AD>CD,則∠ADB與∠AEB的度數(shù)之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關系的圖象,根據(jù)圖象解答下列問題.
(1)A比B后出發(fā)幾個小時?B的速度是多少?
(2)在B出發(fā)后幾小時,兩人相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com