如圖,在平面直角坐標(biāo)系x0y中,直線(xiàn)y=kx+b(k≠0)交雙曲線(xiàn)(m≠0)于點(diǎn)M、N,且分別交x軸、y軸于點(diǎn)A、B,且OB=MB,cos∠OBA=,點(diǎn)M的橫坐標(biāo)為3,連接OM.
(1)分別求出直線(xiàn)和雙曲線(xiàn)的解析式;
(2)求△OAM的面積.

【答案】分析:(1)求出MB,OB,OA,得出A、B的坐標(biāo),把A、B的坐標(biāo)代入一次函數(shù)的解析式求出即可,求出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式,求出即可;
(2)根據(jù)A的橫坐標(biāo)和M的縱坐標(biāo)求出即可.
解答:解:(1)∵cos∠OBA==,
∴sin∠OBA=sin∠EBM==,
∴MB=5=OB,
即OB=5,OA=
即A(-,0),B(0,5),
代入y=kx+b得:,
解得:k=,b=5,
∴一次函數(shù)的解析式是y=x+5;
把x=3代入得:y=9,
∴M(3,9),
把M的坐標(biāo)代入y=得:m=27,
∴反比例函數(shù)的解析式是y=;
(2)△AOM的面積是××9=


點(diǎn)評(píng):本題考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題的應(yīng)用,主要考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案