【題目】在一次男子馬拉松長(zhǎng)跑比賽中,隨機(jī)抽得12名選手所用的時(shí)間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計(jì)算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績(jī)是147分鐘,請(qǐng)你依據(jù)樣本數(shù)據(jù)中位數(shù),推斷他的成績(jī)?nèi)绾危?/span>
【答案】
(1)
解:將這組數(shù)據(jù)按照從小到大的順序排列為:125,134,140,143,146,148,152,155,162,164,168,175,
則中位數(shù)為: =150,
平均數(shù)為: =151;
(2)
解:由(1)可得,中位數(shù)為150,可以估計(jì)在這次馬拉松比賽中,大約有一半選手的成績(jī)快于150分鐘,有一半選手的成績(jī)慢于150分鐘,這名選手的成績(jī)?yōu)?47分鐘,快于中位數(shù)150分鐘,可以推斷他的成績(jī)估計(jì)比一半以上選手的成績(jī)好.
【解析】(1)根據(jù)中位數(shù)和平均數(shù)的概念求解;
。2)根據(jù)(1)求得的中位數(shù),與147進(jìn)行比較,然后推斷該選手的成績(jī).本題考查了中位數(shù)和平均數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù);平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).
【考點(diǎn)精析】關(guān)于本題考查的算術(shù)平均數(shù),需要了解總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對(duì)應(yīng)的總份數(shù)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過點(diǎn)A時(shí),求⊙P被OB截得的弦長(zhǎng).
(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E為對(duì)角線BD上一動(dòng)點(diǎn).若AB=,當(dāng)∠EAC=15°時(shí),線段BE的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請(qǐng)?jiān)趫D中標(biāo)出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲走過的路程;
(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點(diǎn)B,與直線y=kx+b交于點(diǎn)A,直線x=3與x軸交于點(diǎn)C,與直線y=kx+b交于點(diǎn)D.
(1)若點(diǎn)A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設(shè)直線y=kx+b與x軸交于點(diǎn)E與y軸交于點(diǎn)F,當(dāng) = 且△OFE的面積等于 時(shí),求這個(gè)一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多邊形的內(nèi)角和隨著邊數(shù)的變化而變化.設(shè)多邊形的邊數(shù)為n,內(nèi)角和為N,則變量N與n之間的關(guān)系可以表示為N=(n-2)180°.例如:如圖四邊形ABCD的內(nèi)角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°問:(1)利用這個(gè)關(guān)系式計(jì)算五邊形的內(nèi)角和;(2)當(dāng)一個(gè)多邊形的內(nèi)角和N=720°時(shí),求其邊數(shù)n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳在本學(xué)期的體育測(cè)試中,1分鐘跳繩獲得了滿分,她的“滿分秘籍”如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進(jìn)行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內(nèi)跳繩速度y(個(gè)/秒)與時(shí)間t(秒)關(guān)系的函數(shù)圖象大致為( 。
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,|2-(-1)|表示2與-1的差的絕對(duì)值,實(shí)際上位可理解為在數(shù)軸上正數(shù)2對(duì)應(yīng)的點(diǎn)與負(fù)數(shù)一1對(duì)應(yīng)的點(diǎn)之間的距離,試探索:
(1)|2-(-1)|=______;如果|x-1|=2,則x=______.
(2)求|x-2|+|x-4|的最小值,并求此時(shí)x的取值范圍;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值與最小值;
(4)由以上探索及猜想,計(jì)算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com