(本小題滿分12分)
小題1: (1)觀察發(fā)現(xiàn)
如(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。
做法如下:作點(diǎn)B關(guān)于直線的對稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P
再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。
做法如下:作點(diǎn)B關(guān)于AD的對稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為       . (2分)

小題2:(2)實(shí)踐運(yùn)用
如圖,菱形ABCD的兩條對角線分別長6和8,點(diǎn)P是對角線AC上的一個動點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)

小題3:(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

小題1:
小題2:略
小題3:(3)找B關(guān)于AC對稱點(diǎn)E,連DE延長交AC于P即可,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,在平面直角坐標(biāo)系中,已知,ΔABO的三個頂點(diǎn)的坐標(biāo)分別為A(2,2),B(0,4),O(0,0);
小題1:畫出ΔABO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)900后得到的Δ0并寫出點(diǎn)A,B的坐標(biāo);
小題2:求旋轉(zhuǎn)過程中動點(diǎn)B所經(jīng)過的路徑長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)如圖,將長方形紙片的兩角分別折疊,使頂點(diǎn)B落在B′處,頂點(diǎn)A落在A′處,EC、ED為折痕,并且點(diǎn)E、A′、B′在同一條直線上。若∠BED=320,求∠CED和∠AEC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠AOB內(nèi)一點(diǎn)P,P1、P2分別是P關(guān)于OA、OB的對稱點(diǎn),P1P2交OA于M,交OB于N,若P1P2 = 5cm,則ΔPMN的周長是____________ cm
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分7分)已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點(diǎn).當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證
小題1:(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
小題2:(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在4×4的正方形網(wǎng)格中,△MNP繞某點(diǎn)旋轉(zhuǎn)90°,得到△M1N1P1,則其旋轉(zhuǎn)中心可以是(   ) 
A.點(diǎn)EB.點(diǎn)FC.點(diǎn)GD.點(diǎn)H

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖.將一塊斜邊長為12 cm!螧=60°的直角三角尺ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°至△A’B’C’的位置,再沿CB向右平移,使點(diǎn)B’剛好落在斜邊AB上,那么此三角尺向右平移的距離是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若點(diǎn)A(a–2,3)與點(diǎn)B(4,–3)關(guān)于原點(diǎn)對稱,則a=       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖, 已知直線, 則(   ) 
A.B.C.D.

第 4題

查看答案和解析>>

同步練習(xí)冊答案