【題目】如圖,在△ABC中,∠ACB90°,ACBCOAB的中點(diǎn),點(diǎn)DAC上,點(diǎn)EBC上,且∠DOE90°.則下列結(jié)論:①OAOBOC;②CDBE;③△ODE是等腰直角三角形;④四邊形CDOE的面積等于△ABC的面積的一半.其中正確的有____(填序號(hào)).

【答案】①②③④

【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半來(lái)判定①;證明COD≌△BOE,來(lái)判定②③④;

解:在ABC中,∵∠ACB90°,ACBC,OAB的中點(diǎn),

OAOBOC;故①正確;

ACBC,OAB的中點(diǎn),∴OCAB,

∵∠DOE=∠COB=90°

∴∠DOC=EOB,

又∵OC=OB,DCO=EBO=45°,

COD≌△BOE

CD=EB,OD=OE,SCOD =SBOE,即②③④正確.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)ykx+b的圖象經(jīng)過(guò)點(diǎn)(0,2)和點(diǎn)(1,﹣1).

1)求這個(gè)一次函數(shù)的解析式;

2)求此一次函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市數(shù)學(xué)調(diào)研小組對(duì)老師在講評(píng)試卷中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中七年級(jí)學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息答下列問(wèn)題:

1)在這次評(píng)價(jià)中,一共抽查了  名學(xué)生;

2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

3)如果全市有4000名七年級(jí)學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的七年級(jí)學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長(zhǎng)為36 cm,點(diǎn)P從點(diǎn)A開始沿AB邊向B點(diǎn)以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng),如果同時(shí)出發(fā),則過(guò)3s時(shí),△BPQ的面積為____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有一塊等腰三角形紙板,在它的兩腰上各有一點(diǎn)EF,把這兩點(diǎn)分別與底邊中點(diǎn)連結(jié),并沿著這兩條線段剪下兩個(gè)三角形,所得的這兩個(gè)三角形相似,剩余部分(四邊形)的四條邊的長(zhǎng)度如圖所示,那么原等腰三角形的底邊長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).

1)在第一象限內(nèi)找一點(diǎn)P,以格點(diǎn)PAB為頂點(diǎn)的三角形與ABC相似但不全等,請(qǐng)寫出符合條件格點(diǎn)P的坐標(biāo);

2)請(qǐng)用直尺與圓規(guī)在第一象限內(nèi)找到兩個(gè)點(diǎn)M、N,使∠AMB=ANB=ACB.請(qǐng)保留作圖痕跡,不要求寫畫法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:

已知:如圖,AE平分∠BACCE平分∠ACD,且∠α+∠β90°.

求證:ABCD.

證明:∵CE平分∠ACD (已知),

∴∠ACD2α(______________________)

AE平分∠BAC (已知),

∴∠BAC_________(______________________)

∵∠α+∠β90°(已知),

2α2β180°(等式的性質(zhì))

∴∠ACD+∠BAC==_________(______________________)

ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=∠ACD90°,∠ABC=∠ADCCEAD,且BE平分∠ABC,則下列結(jié)論:①ADBC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是(

A. ①②B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案