【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點(diǎn),P為圓外一點(diǎn),PC、PD均與圓相切,設(shè)∠A+B130°,∠CPDβ,則β_____

【答案】100°

【解析】

連結(jié)OC,OD,則∠PCO90°,∠PDO90°,可得∠CPD+∠COD180°,根據(jù)OBOC,ODOA,可得∠BOC180°2B,∠AOD180°2A,則可得出β的關(guān)系式.進(jìn)而可求出β的度數(shù).

連結(jié)OC,OD

PC、PD均與圓相切,

∴∠PCO90°,∠PDO90°,

∵∠PCO+COD+ODP+CPD360°

∴∠CPD+COD180°,

OBOCODOA,

∴∠BOC180°2B,∠AOD180°2A,

∴∠COD+BOC+AOD180°,

180°﹣∠CPD+180°2B+180°2A180°

∴∠CPD100°

故答案為:100°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y1,y2的圖象的頂點(diǎn)分別為(ab)、(cd),當(dāng)a=﹣c,b=2d,且開口方向相同時(shí),則稱y1y2反倍頂二次函數(shù)

1)請(qǐng)寫出二次函數(shù)y=x2+x+1的一個(gè)反倍頂二次函數(shù);

2)已知關(guān)于x的二次函數(shù)y1=x2+nx和二次函數(shù)y2=nx2+x,函數(shù)y1+y2恰是y1﹣y2反倍頂二次函數(shù),求n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:對(duì)于關(guān)于的函數(shù)我們稱函數(shù)為函數(shù)分函數(shù)(其中為常數(shù))

例如:對(duì)于關(guān)于的一次函數(shù)分函數(shù)為

1)若點(diǎn)在關(guān)于的一次函數(shù)分函數(shù)上,求的值.

2)寫出反比例函數(shù)分函數(shù)的圖象上的增大而減小的的取值范圍 ;

3)若是二次函數(shù)關(guān)于分函數(shù).

當(dāng)時(shí),求的取值范圍.

當(dāng)時(shí),的取值范圍為 ;

4)若點(diǎn)連結(jié)當(dāng)關(guān)于的二次函數(shù)分函數(shù),與線段有兩個(gè)交點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程隊(duì)在我市實(shí)施棚戶區(qū)改造過程中承包了一項(xiàng)拆遷工程.原計(jì)劃每天拆遷,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了.從第二天開始,該工程隊(duì)加快了拆遷速度,第三天拆遷了.求:

該工程隊(duì)第一天拆遷的面積;

若該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:

(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?

(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點(diǎn)F作GFAF交AD于點(diǎn)G,設(shè)

(1)求證:AE=GE;

(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;

(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BCO的直徑,AD于點(diǎn)A,CDOAO于另一點(diǎn)E

1)求證:△ACD∽△BCA;

2)若AO上一動(dòng)點(diǎn),則

當(dāng)∠B_____時(shí),以A,O,C,D為頂點(diǎn)的四邊形是正方形;

當(dāng)∠B_____時(shí),以A,OC,E為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:已知實(shí)數(shù)mn滿足,求的值.

解:設(shè),則原方程可化為(t+1)(t-1)=35,整理得t2-1=35,t2=36,

t=±6

,

上面這種解題方法為換元法,在結(jié)構(gòu)較復(fù)雜的數(shù)和式的運(yùn)算中,若把其中某些部分看成一個(gè)整體,則能使復(fù)雜的問題簡(jiǎn)單化,根據(jù)換元法解決下列問題:

1)已知實(shí)數(shù)x、y滿足,求的值;

2)若四個(gè)連續(xù)正整數(shù)的積為360,求這四個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,軸正半軸、軸正半軸分別交于點(diǎn)兩點(diǎn),直線兩點(diǎn),,的延長(zhǎng)線交于點(diǎn),則的值為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案