【題目】某校九年級(jí)(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)如表所示:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | b | 0.18 |
三級(jí)蛙跳 | 12 | 0.24 |
一分鐘跳繩 | 8 | a |
投擲實(shí)心球 | 16 | 0.32 |
推鉛球 | 5 | 0.10 |
合計(jì) | 50 | 1 |
(1)求a,b的值;
(2)若該校九年級(jí)共有400名學(xué)生,試估計(jì)年級(jí)選擇“一分鐘跳繩”項(xiàng)目的總?cè)藬?shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生,為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至少有一名女生的概率.
【答案】(1)a=0.16;b=9;(2)64;(3).
【解析】
(1)根據(jù)表格求出a與b的值即可;
(2)計(jì)算出50名學(xué)生選擇“一分鐘跳繩”項(xiàng)目的人數(shù),進(jìn)而可估計(jì)該校九年級(jí)有400名學(xué)生,選擇“一分鐘跳繩”項(xiàng)目的總?cè)藬?shù);
(3)列表得出所有等可能的情況數(shù),找出抽取的兩名學(xué)生中至少有一名女生的情況,即可求出所求概率.
解:(1)根據(jù)題意得:a=1﹣(0.18+0.24+0.32+0.10)=0.16;
b=50×0.18=9;
(2)(人);
(3)男生編號(hào)為A、B、C,女生編號(hào)為D、E,
男A | 男B | 男C | 女D | 女E | |
男A | (B,A) | (C,A) | (D,A) | (E,A) | |
男B | (A,B) | (C,B) | (D,B) | (E,B) | |
男C | (A,C) | (B,C) | (D,C) | (E,C) | |
女D | (A,D) | (B,D) | (C,D) | (E,D) | |
女E | (A,E) | (B,E) | (C,E) | (D,E) |
共有20種情況,其中有1名女生的情況有12種,有2名女生的情況有2種,因此至少有一名女生的情況包括兩種情況,共14種,
∴抽取的兩名學(xué)生中至少有一名女生的概率為:=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形 ABCD 中,過(guò)點(diǎn) D 作 DE⊥AB 于點(diǎn) E,點(diǎn) F 在 CD 上,CF =AE,連接 BF,AF.
(1)求證:四邊形 BFDE 是矩形;
(2)若 AF 平分∠BAD,交DE與H點(diǎn),且 AB=3AE,BF=6,求AH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)以致用:?jiǎn)栴}1:怎樣用長(zhǎng)為的鐵絲圍成一個(gè)面積最大的矩形?
小學(xué)時(shí)我們就知道結(jié)論:圍成正方形時(shí)面積最大,即圍成邊長(zhǎng)為的正方形時(shí)面積最大為.請(qǐng)用你所學(xué)的二次函數(shù)的知識(shí)解釋原因.
思考驗(yàn)證:?jiǎn)栴}2:怎樣用鐵絲圍一個(gè)面積為且周長(zhǎng)最小的矩形?
小明猜測(cè):圍成正方形時(shí)周長(zhǎng)最。
為了說(shuō)明其中的道理,小明翻閱書籍,找到下面的結(jié)論:
在、均為正實(shí)數(shù))中,若為定值,則,只有當(dāng)時(shí),有最小值.
思考驗(yàn)證:證明:、均為正實(shí)數(shù))
請(qǐng)完成小明的證明過(guò)程:
證明:對(duì)于任意正實(shí)數(shù)、
解決問(wèn)題:
(1)若,則 (當(dāng)且僅當(dāng) 時(shí)取“” ;
(2)運(yùn)用上述結(jié)論證明小明對(duì)問(wèn)題2的猜測(cè);
(3)填空:當(dāng)時(shí),的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗鄉(xiāng)村,某中學(xué)七年級(jí)(1)班同學(xué)都積極參加了植樹活動(dòng),將今年三月份該班同學(xué)的植樹情況繪制成如圖所示的不完整的統(tǒng)計(jì)圖.已知植樹量為2株的人數(shù)占總?cè)藬?shù)的32%.
(1)該班的總?cè)藬?shù)為____________,植樹株數(shù)的眾數(shù)是____________,植樹株數(shù)的中位數(shù)是____________;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若將該班同學(xué)的植樹情況繪制成扇形統(tǒng)計(jì)圖,求“植樹量為3株”所對(duì)應(yīng)的扇形的園心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓的直徑,C是半圓弧上一點(diǎn),正方形DEFG的一邊DG在直徑AB上,另一邊DE過(guò)△ABC的內(nèi)切圓圓心O,且點(diǎn)E在半圓上.
(1)當(dāng)正方形的頂點(diǎn)F也在半圓弧上時(shí),半圓的半徑與正方形邊長(zhǎng)的比為 ;
(2)當(dāng)正方形DEFG的面積為100,且△ABC的內(nèi)切圓⊙O的半徑r=4,求半圓的直徑AB的值;
(3)若半圓的半徑為R,直接寫出⊙O半徑r可取得的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時(shí)間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實(shí)驗(yàn)結(jié)果表明,學(xué)生注意力指數(shù)y隨時(shí)間x(min)的變化規(guī)律如圖所示(其中分別為線段,為雙曲線的一部分):
(1)上課后第與第相比較,何時(shí)學(xué)生注意力更集中?
(2)某道難題需連續(xù)講,為保證效果,學(xué)生注意力指數(shù)不宜低于,老師能否在所需要求下講完這道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=x2+(m﹣2)x﹣2m(m>0)與x軸交于A、B兩點(diǎn)(A在B左邊),與y軸交于點(diǎn)C.連接AC、BC,D為拋物線上一動(dòng)點(diǎn)(D在B、C兩點(diǎn)之間),OD交BC于E點(diǎn).
(1)若△ABC的面積為8,求m的值;
(2)在(1)的條件下,求的最大值;
(3)如圖2,直線y=kx+b與拋物線交于M、N兩點(diǎn)(M不與A重合,M在N左邊),連MA,作NH⊥x軸于H,過(guò)點(diǎn)H作HP∥MA交y軸于點(diǎn)P,PH交MN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com