【題目】在直線(xiàn)L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

【答案】C

【解析】

試題如圖,圖中的四邊形為正方形,

∴∠ABD=90°,AB=DB,

∴∠ABC+∠DBE=90°,

∵∠ABC+∠CAB=90°,

∴∠CAB=∠DBE,

△ABC△BDE中,

∴△ABC≌△BDEAAS),

∴AC=BE,

∵DE2+BE2=BD2,

∴ED2+AC2=BD2,

∵S1=AC2S2=DE2,BD2=1,

∴S1+S2=1,

同理可得S2+S3=2S3+S4=3,

∴S1+2S2+2S3+S4=1+2+3=6

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,則梯形ABCD的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是大半圓O的直徑,AO是小半圓M的直徑,點(diǎn)P是大半圓O上一點(diǎn),PA與小半圓M交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥OP于點(diǎn)D.
(1)求證:CD是小半圓M的切線(xiàn);
(2)若AB=8,點(diǎn)P在大半圓O上運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)PD=x,CD2=y. ①求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
②當(dāng)y=3時(shí),求P,M兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖州某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購(gòu)買(mǎi)A、B兩種型號(hào)的污水處理設(shè)備共10臺(tái),具體情況如下表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

15

12

月污水處理能力(噸/月)

250

200

經(jīng)預(yù)算,企業(yè)最多支出136萬(wàn)元購(gòu)買(mǎi)設(shè)備,且要求月處理污水能力不低于2150噸.

(1)該企業(yè)有哪幾種購(gòu)買(mǎi)方案?

(2)哪種方案更省錢(qián)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一、閱讀理解

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C為直角,則a2+b2=c2

(2)若∠C為銳角,則a2+b2c2的關(guān)系為:a2+b2>c2;

(3)若∠C為鈍角,試推導(dǎo)a2+b2c2的關(guān)系.

二、探究問(wèn)題:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是鈍角三角形,求第三邊c的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(
A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC△DEC中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是(  。

A. BC=EC,∠B=∠E B. BC=DC,∠A=∠D

C. BC=EC,AC=DC D. AC=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)l與拋物線(xiàn)y=mx2+nx相交于A(yíng)(1,3 ),B(4,0)兩點(diǎn).
(1)求出拋物線(xiàn)的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線(xiàn)段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線(xiàn)段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線(xiàn)于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿(mǎn)足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案