【題目】已知△ABD與△GDF都是等腰直角三角形,BD與DF均為斜邊(BD<DF).
(1)如圖1,B,D,F(xiàn)在同一直線上,過(guò)F作MF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AM交BF于點(diǎn)H,連結(jié)GA,GM.
①求證:AH=HM;
②請(qǐng)判斷△GAM的形狀,并給予證明;
③請(qǐng)用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說(shuō)明理由.
(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長(zhǎng)交DF于點(diǎn)M,請(qǐng)用等式直接寫出線段AM,BD,DF的數(shù)量關(guān)系.
【答案】(1)①詳見(jiàn)解析;②詳見(jiàn)解析;(2)AM2=BD2+DF2﹣ DFBD.
【解析】
(1)①易證∠ABD=∠HFM=45°,從而根據(jù)“AAS”可證△AHB≌△MHF,由全等三角形的對(duì)應(yīng)邊相等可得AH=HM;
②根據(jù)“SAS”可證△GAD≌△GMF,從而AG=GM,∠AGD=∠MGF,進(jìn)而可證∠AGM=90°,所以△GAM是等腰直角三角形;
③根據(jù)勾股定理即可得出線段AM,BD,DF的數(shù)量關(guān)系;
(2)易證∠ADM=90°,根據(jù)“AAS”可證△ABH≌△HFM,從而FM=AB,然后根據(jù)AM2=AD2+DM2整理即可.
(1)①證明:如圖1,∵M(jìn)F⊥GF,
∴∠GFM=90°,
∵△ABD與△GDF都是等腰直角三角形,
∴∠DFG=∠ABD=45°,
∴∠HFM=90°﹣45°=45°,
∴∠ABD=∠HFM,
∵AB=MF,∠AHB=∠MHF,
∴△AHB≌△MHF,
∴AH=HM;
②如圖1,△GAM是等腰直角三角形,理由是:
∵△ABD與△GDF都是等腰直角三角形,
∴AB=AD,DG=FG,
∠ADB=∠GDF=45°,
∴∠ADG=∠GFM=90°,
∵AB=FM,
∴AD=FM,
∴△GAD≌△GMF,
∴AG=GM,∠AGD=∠MGF,
∴∠ADG+∠DGM=∠MGF+∠DGM=90°,
∴△GAM是等腰直角三角形;
③如圖1,AM2=BD2+DF2,理由是:
∵△AGM是等腰直角三角形,
∴AM2=2MG2,
Rt△GMF中,MG2=FG2+FM2=AB2+FG2,
∵△ABD與△GDF都是等腰直角三角形,
∴AB=,F(xiàn)G=,
∴AM2=2MG2=2(+)=BD2+DF2;
(2)如圖2,∵GD⊥BD,∠ADB=45°,
∴∠ADG=45°,
∴∠ADM=45°+45°=90°,
∵∠HMF=∠ADM+∠DAM=90°+∠DAM=∠BAH,
∵H是BF的中點(diǎn),
∴BH=HF,
∵∠AHB=∠MHF,
∴△ABH≌△HFM,
∴FM=AB,
在Rt△ADM中,由勾股定理得:AM2=AD2+DM2,
=AD2+(DF﹣FM)2,
=AD2+DF2﹣2DFFM+FM2,
=BD2+DF2﹣2DF,
=BD2+DF2﹣DFBD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.
(1)如圖1,若點(diǎn)的坐標(biāo)為,是等腰直角三角形,,,求點(diǎn)坐標(biāo);
(2)如圖2,若點(diǎn)是的中點(diǎn),求證:;
(3)如圖3,是等腰直角三角形,,,是等邊三角形,連接,若,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連接AE,作AF⊥AE且AF=AE.
(1)如圖1,過(guò)F點(diǎn)作FD⊥AC交AC于D點(diǎn),求證:EC+CD=DF;
(2)如圖2,連接BF交AC于G點(diǎn),若 =3,求證:E點(diǎn)為BC中點(diǎn);
(3)當(dāng)E點(diǎn)在射線CB上,連接BF與直線AC交于G點(diǎn),若,則=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(m+1)x2﹣2(m+1)x﹣m+3.
(1)求該二次函數(shù)的對(duì)稱軸;
(2)過(guò)動(dòng)點(diǎn)C(0,n)作直線l⊥y軸,當(dāng)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí),求n關(guān)于m的函數(shù)表達(dá)式;
(3)若對(duì)于每一個(gè)給定的x值,它所對(duì)應(yīng)的函數(shù)值都不大于6,求整數(shù)m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若點(diǎn)M是y軸正半軸上任意一點(diǎn),過(guò)點(diǎn)M作PQ∥x軸,分別交函數(shù)y=(x<0)和y=(x>0)的圖象于點(diǎn)P和Q,連接OP和OQ.以下列結(jié)論:
①∠POQ不可能等于90°;
②;
③這兩個(gè)函數(shù)的圖象一定關(guān)于y軸對(duì)稱;
④若S△POM=S△QOM,則k1+k2=0;
⑤△POQ的面積是(|k1|+|k2|).
其中正確的有_____(填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知矩形ABOC中,AC=4,雙曲線y=與矩形兩邊AB、AC分別交于D、E,E為AC邊中點(diǎn).
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使∠DPC=90°?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)M,N同時(shí)從點(diǎn)B出發(fā),分別在BC,BA上運(yùn)動(dòng),若點(diǎn)M的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度,且是點(diǎn)N運(yùn)動(dòng)速度的2倍,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),停止一切運(yùn)動(dòng).以MN為對(duì)稱軸作△MNB的對(duì)稱圖形△MNB1.點(diǎn)B1恰好在AD上的時(shí)間為______秒.在整個(gè)運(yùn)動(dòng)過(guò)程中,△MNB1與矩形ABCD重疊部分面積的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC.
(1)求證:AE平分∠BAD.
(2)求證:AD=AB+CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com