如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

【答案】分析:(1)可先求出A、B、E關(guān)于原點(diǎn)對(duì)稱的對(duì)稱點(diǎn)的坐標(biāo),然后用待定系數(shù)法求出拋物線的解析式.
(2)根據(jù)中心對(duì)稱圖形的性質(zhì)不難得出OA=OD,OM=ON,因此四邊形AMDN是平行四邊形,那么其面積就是三角形ADN面積的2倍,可據(jù)此來求S,t的函數(shù)關(guān)系式.
(3)根據(jù)(2)得出的函數(shù)的性質(zhì)和自變量的取值范圍即可得出S的最大值及對(duì)應(yīng)的t的值.
(4)根據(jù)矩形的性質(zhì)可知:當(dāng)AD=MN時(shí),平行四邊形AMDN是矩形,那么OD=ON,據(jù)此可求出t的值.
解答:解:(1)點(diǎn)A(-4,0),點(diǎn)B(-2,0),點(diǎn)E(0,8)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別為D(4,0),C(2,0),F(xiàn)(0,-8).
設(shè)拋物線C2的解析式是y=ax2+bx+c(a≠0),
,
解得,
所以所求拋物線的解析式是y=-x2+6x-8.

(2)由(1)可計(jì)算得點(diǎn)M(-3,-1),N(3,1).
過點(diǎn)N作NH⊥AD,垂足為H.
當(dāng)運(yùn)動(dòng)到時(shí)刻t時(shí),AD=2OD=8-2t,NH=1+2t.
根據(jù)中心對(duì)稱的性質(zhì)OA=OD,OM=ON,
所以四邊形MDNA是平行四邊形.
所以S=2S△ADN
所以,四邊形MDNA的面積S=(8-2t)(1+2t)=-4t2+14t+8.
因?yàn)檫\(yùn)動(dòng)至點(diǎn)A與點(diǎn)D重合為止,據(jù)題意可知0≤t<4.
所以所求關(guān)系式是S=-4t2+14t+8,t的取值范圍是0≤t<4.

(3)S=-4(t-2+,(0≤t<4).
所以時(shí),S有最大值
提示:也可用頂點(diǎn)坐標(biāo)公式來求.

(4)在運(yùn)動(dòng)過程中四邊形MDNA能形成矩形.
由(2)知四邊形MDNA是平行四邊形,對(duì)角線是AD,MN,
所以當(dāng)AD=MN時(shí)四邊形MDNA是矩形,
所以O(shè)D=ON.所以O(shè)D2=ON2=OH2+NH2
所以t2+4t-2=0.
解之得t1=-2,t2=--2(舍).
所以在運(yùn)動(dòng)過程中四邊形MDNA可以形成矩形,此時(shí)t=-2.
點(diǎn)評(píng):本題以二次函數(shù)為背景,結(jié)合動(dòng)態(tài)問題、存在性問題、最值問題,是一道較傳統(tǒng)的壓軸題,能力要求較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求C3的解析式;
(3)如圖(2),點(diǎn)Q是x軸正半軸上一點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、F為頂點(diǎn)的三角形是直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱時(shí),求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線c1:y=-
14
x2+bx+c
與x軸交于點(diǎn)A、B(點(diǎn)A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線c2與拋物線c1關(guān)于y軸對(duì)稱,點(diǎn)A、B的對(duì)稱點(diǎn)分別是E、D,連接CD、CB,設(shè)AD=m.
(1)拋物線c2可以看成拋物線c1向右平移
m
m
個(gè)單位得到.
(2)若m=2,求b的值.
(3)將△CDB沿直線BC折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為G,且四邊形CDBG是平行四邊形,
①△CDB為
等邊
等邊
三角形(按邊分);
②若點(diǎn)G恰好落在拋物線c2上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B精英家教網(wǎng)的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對(duì)稱時(shí),求拋物線C3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1y=
12
x2
,把它平移后得拋物線C2,使C2經(jīng)過點(diǎn)A(0,8),且與拋物線C1交于點(diǎn)B(2,n).在x軸上有一點(diǎn)P,從原點(diǎn)O出發(fā)以每秒1個(gè)單位的速度沿x軸正半軸的方向移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,過點(diǎn)P作x軸的垂線l,分別交拋物線C1、C2于E、D,當(dāng)直線l經(jīng)過點(diǎn)B前停止運(yùn)動(dòng),以DE為邊在直線l左側(cè)畫正方形DEFG.
(1)判斷拋物線C2的頂點(diǎn)是否在x軸上,并說明理由;
(2)當(dāng)t為何值時(shí),正方形DEFG在y軸右側(cè)的部分的面積S有最大值?最大值為多少?
(3)設(shè)M為正方形DEFG的對(duì)稱中心.當(dāng)t為何值時(shí),△MOP為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案