【題目】在△ABC中,ADBE是高,∠ABE=45°,點(diǎn)FAB的中點(diǎn),ADFE,BE分別交于點(diǎn)G、H.CBE=BAD,有下列結(jié)論:①FD=FE;AH=2CD;BCAD=AE2;SBEC=SADF.其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)題意和圖形,可以判斷各小題中的結(jié)論是否成立,從而可以解答本題.

∵在△ABC中,ADBE是高,

∴∠ADB=AEB=CEB=90°,

∵點(diǎn)FAB的中點(diǎn),

FD=AB,F(xiàn)E=AB,

FD=FE,①正確;

∵∠CBE=BAD,CBE+C=90°,BAD+ABC=90°,

∴∠ABC=C,

AB=AC,

ADBC,

BC=2CD,BAD=CAD=CBE,

在△AEH和△BEC中,

∴△AEH≌△BEC(ASA),

AH=BC=2CD,②正確;

∵∠BAD=CBE,ADB=CEB,

∴△ABD∽△BCE,

,即BCAD=ABBE,

∵∠AEB=90°,AE=BE,

AB=BE

BCAD=BEBE,

BCAD=AE2;③正確;

設(shè)AE=a,則AB=a,

CE=a﹣a,

=,

,

AF=AB,

,

SBEC≠SADF,故④錯(cuò)誤,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,小剛同學(xué)按如下步驟作圖:

(1)B為圓心,BC長(zhǎng)為半徑畫弧,交AB于點(diǎn)E

(2)分別以點(diǎn)C.E為圓心,大于CE的長(zhǎng)為半徑畫弧,兩弧在△ABC內(nèi)相交于點(diǎn)P

(3)連接BP,并延長(zhǎng)交AC于點(diǎn)D

(4)連接DE

根據(jù)以上作圖步驟,有下列結(jié)論:①BD平分∠ABC; AD+DE = AC;③點(diǎn)P與點(diǎn)D關(guān)于直線CE對(duì)稱; ④△BCD與△BED關(guān)于直線BD對(duì)稱.

其中正確結(jié)論的個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)I△ABC的內(nèi)心,O△ABC的外心,∠A=80°,則∠BIC=________,∠BOC=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)初中組織了“英語手抄報(bào)”征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)抽取了_____份作品;

(2)此次抽取的作品中等級(jí)為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共征集到600份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司推出了甲、乙兩種新品飲料,它們都由A、B、C三種溶液組成,只是甲種飲料每瓶裝有200A溶液,200B溶液,100C溶液;乙種飲料每瓶裝有100A溶液,100B溶液,300C溶液,甲、乙兩種飲料每瓶成本價(jià)均為瓶中AB、C三種溶液的成本價(jià)之和.已知C種溶液每一百克的成本價(jià)為1元,乙種飲料每瓶售價(jià)為10元,利潤(rùn)率為,甲種飲料每瓶的利潤(rùn)率為20%,求這兩種飲料的銷售利潤(rùn)率為24%時(shí),該公司銷售甲、乙兩種飲料的數(shù)量之比是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學(xué)生人數(shù)為   ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)Cx軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)DAB運(yùn)動(dòng),點(diǎn)EBC運(yùn)動(dòng),點(diǎn)FCA運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問題:

(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.

(2)如圖②過點(diǎn)EEQAB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求St的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.

(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫出P坐標(biāo),若不存在請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信、支付寶、共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,AB 兩點(diǎn)的坐標(biāo)分別為 A(1,4),B(5,1),P,Q 分別是 x 軸,y 上兩個(gè)動(dòng)點(diǎn),則四邊形 ABPQ 的周長(zhǎng)最小值為(

A.5B.5 C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案