如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3)、B(6,3),連接AB.如果點(diǎn)P在直線y=x-1上,且點(diǎn)P到直線AB的距離小于1,那么稱點(diǎn)P是線段AB的“臨近點(diǎn)”.
(1)判斷點(diǎn)C()是否是線段AB的“臨近點(diǎn)”,并說(shuō)明理由;
(2)若點(diǎn)Q(m,n)是線段AB的“臨近點(diǎn)”,求m的取值范圍.

【答案】分析:(1)根據(jù)A、B的坐標(biāo)得出AB∥x軸,根據(jù)點(diǎn)P到直線AB的距離小于1,求出當(dāng)縱坐標(biāo)y在2<y<4范圍內(nèi)時(shí),點(diǎn)是線段AB的“臨近點(diǎn)”,看點(diǎn)的縱坐標(biāo)是否在y的范圍內(nèi)即可;
(2)根據(jù)線段AB的“臨近點(diǎn)”的縱坐標(biāo)的范圍是2<n<4,把n=2和n=4分別代入n=m-1,求出相應(yīng)的m值,即可得出點(diǎn)的橫坐標(biāo)m的范圍.
解答:解:(1)點(diǎn)C()是線段AB的“臨近點(diǎn)”.理由是:
∵點(diǎn)P到直線AB的距離小于1,A、B的縱坐標(biāo)都是3,
∴AB∥x軸,3-1=2,3+1=4,
∴當(dāng)縱坐標(biāo)y在2<y<4范圍內(nèi)時(shí),點(diǎn)是線段AB的“臨近點(diǎn)”,
點(diǎn)C的坐標(biāo)是(),
∴y=>2,且小于4,
∵C()在直線y=x-1上,
∴點(diǎn)C()是線段AB的“臨近點(diǎn)”.

(2)∵點(diǎn)Q(m,n)是線段AB的“臨近點(diǎn)”,由(1)可以得出:線段AB的“臨近點(diǎn)”的縱坐標(biāo)的范圍是2<n<4,
把n=2代入y=x-1(即n=m-1)得:m=3,
n=4代入y=x-1(即n=m-1)得:m=5,
∴3<m<5,
即m的取值范圍是3<m<5.
點(diǎn)評(píng):本題考查了有關(guān)一次函數(shù)的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生的閱讀能力和計(jì)算能力,此題是一道非常好、比較典型的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案