【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
求證:
(1)△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
【答案】
(1)證明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+CAD
即∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
(2)BD、CE特殊位置關(guān)系為BD⊥CE.
證明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置關(guān)系為BD⊥CE
【解析】要證(1)△BAD≌△CAE,現(xiàn)有AB=AC,AD=AE,需它們的夾角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易證得.(2)BD、CE有何特殊位置關(guān)系,從圖形上可看出是垂直關(guān)系,可向這方面努力.要證BD⊥CE,需證∠BDE=90°,需證∠ADB+∠ADE=90°可由直角三角形提供.
科目:初中數(shù)學 來源: 題型:
【題目】為了切實關(guān)注、關(guān)愛貧困家庭學生,某校對全校各班貧困家庭學生的人數(shù)情況進行了統(tǒng)計,以便國家精準扶貧政策有效落實.統(tǒng)計發(fā)現(xiàn)班上貧困家庭學生人數(shù)分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計圖:
(1)求該校一共有多少個班?并將條形圖補充完整;
(2)某愛心人士決定從2名貧困家庭學生的這些班級中,任選兩名進行幫扶,請用列表法或樹狀圖的方法,求出被選中的兩名學生來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某次海上軍事學習期間,我軍為確保△OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達,雷達的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)
(1)若三艘軍艦要對△OBC海域進行無盲點監(jiān)控,則雷達的有效探測半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20海里/小時的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年鄞州區(qū)財政收入仍保持持續(xù)增長態(tài)勢,全年財政收入為373.9億元,其中373.9億元用科學記數(shù)法表示為( )
A.373.9×108元
B.37.39×109元
C.3.739×1010元
D.0.3739×1011
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=.
①求∠ABC的度數(shù);
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內(nèi),延長BC交⊙O于點E,連接DE.求證:DE=DC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com