【題目】某手機專營店代理銷售A、B兩種型號手機.手機的進(jìn)價、售價如下表:
型號 | A | B |
進(jìn)價 | 1800元/部 | 1500元/部 |
售價 | 2070元/部 | 1800元/部 |
(1)第一個月:用54000元購進(jìn)A、B兩種型號的手機,全部售完后獲利9450元,求第一個月購進(jìn)A、B兩種型號手機的數(shù)量;
(2)第二個月:計劃購進(jìn)A、B兩種型號手機共34部,且不超出第一個月購進(jìn)A、B兩種型號的手機總費用,則A型號手機最多能購多少部?
【答案】(1) 該專營店本次購進(jìn)A、B兩種型號手機的數(shù)分別為15部和18部;(2) 第二個月最多能購A型號手機10部.
【解析】
(1)設(shè)該專營店第一個月購進(jìn)A、B兩種型號手機的數(shù)量分別為x部和y部,根據(jù)用54000元購進(jìn)A、B兩種型號的手機,全部售完后獲利9450元,列方程組求解即可;(2)設(shè)第二個月購進(jìn)A型號手機a部,根據(jù)購進(jìn)A、B兩種型號手機共34部,總費用不超過54000元,據(jù)此列不等式求解即可.
(1)設(shè)該專營店第一個月購進(jìn)A、B兩種型號手機的數(shù)量分別為x部和y部.
由題意可知:,
解得:.
答:該專營店本次購進(jìn)A、B兩種型號手機的數(shù)分別為15部和18部;
(2)設(shè)第二個月購進(jìn)A型號手機a部.
由題意可知:1800a+1500(34﹣a)≤54000,
解得:a≤10,
則不等式的最大整數(shù)解為10.
答:第二個月最多能購A型號手機10部.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.
(1)證明:BC=DE;
(2)若AC=12,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8,點D、M分別在BC、AC上,Rt△BDE、Rt△EFG、Rt△GHI、Rt△IJK、Rt△KMA的斜邊都在AB上,則五個小直角三角形的周長和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐探究
在數(shù)學(xué)實踐課上,小明提出了這樣的問題:分?jǐn)?shù)可以寫為小數(shù)形式,即0.反過來,無限循環(huán)小數(shù)0. 寫成分?jǐn)?shù)形式即為.那么無限循環(huán)小數(shù)0. 應(yīng)怎樣化為分?jǐn)?shù)呢?
小明是這樣思考的:
在學(xué)習(xí)解一元一次方程時,當(dāng)變形到ax=b(a≠0)形式后,通過系數(shù)化1,兩邊同時除以a,得到方程的解x=,就是分?jǐn)?shù)形式.
設(shè)0. =x,即x=0.777…,又10x=7.77…,這里x、0.777…、10x、7.77…存在著關(guān)系,根據(jù)這一關(guān)系我就可以找到相等關(guān)系,列出方程.
請你閱讀小明的思考過程,把無限循環(huán)小數(shù)0. 化為分?jǐn)?shù)的過程寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個蓄水池,現(xiàn)將甲池中的水勻速注入乙池.甲、乙兩個蓄水池中水的深度(米)與注水時間(小時)之間的關(guān)系如圖5所示,根據(jù)圖像提供的信息,回答下列問題:
(1)注水前甲池中水的深度是_____________米.(直接寫出答案).
(2)求甲池中水的深度(米)與注水時間(小時)之間的函數(shù)關(guān)系式;
(3)求注水多長時間時,甲、乙兩個蓄水池中水的深度相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點E、D,現(xiàn)測得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.
(1)求椅子的高度(即椅子的座板DF與地面MN之間的距離)(精確到1厘米)
(2)求椅子兩腳B、C之間的距離(精確到1厘米)(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC、∠ACB的平分線相交于O,MN過點O且與BC平行.△ABC的周長為20,△AMN的周長為12,則BC的長為( )
A. 10 B. 16 C. 8 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥CD,∠1+∠2=180°.
(1)判斷DG與AC的位置關(guān)系,并說明理由;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com