【題目】下面是小文設(shè)計(jì)的過圓外一點(diǎn)作圓的切線的作圖過程.已知:和圓外一點(diǎn).求作:過點(diǎn)的切線.作法:連接為直徑作,交于點(diǎn),;作直線;所以直線,的切線.

根據(jù)小文設(shè)計(jì)的作圖過程,完成下面的證明.

證明:連接,

的直徑,

=∠________=________

________)(填推理的依據(jù)).

,________

,的半徑,

直線的切線(________)(填推理的依據(jù)).

【答案】見解析

【解析】

根據(jù)“直徑所對(duì)圓周角是直角”可得,根據(jù)“經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線”即可得證.

證明:連接,

的直徑,

.(直徑所對(duì)的圓周角是直角).

,

,的半徑,

直線,的切線.(經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實(shí)情況,某居委會(huì)成立了甲、乙兩個(gè)檢查組,采取隨機(jī)抽查的方式分別對(duì)轄區(qū)內(nèi)的A,B,CD四個(gè)小區(qū)進(jìn)行檢查,并且每個(gè)小區(qū)不重復(fù)檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請(qǐng)用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+bx、y軸的正半軸交于點(diǎn)A,B,與雙曲線y=﹣交于點(diǎn)C(點(diǎn)C在第二象限內(nèi)),點(diǎn)D,過點(diǎn)CCEx軸于點(diǎn)E,記四邊形OBCE的面積為S1,OBD的面積為S2,若,則b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果

下面有三個(gè)推斷:

①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47

②隨著試驗(yàn)次數(shù)的增加,正面向上的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)正面向上的概率是0.5;

③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)C為線段上一點(diǎn),以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接

1)如圖1,當(dāng)時(shí):

①求證:;

②判斷線段的數(shù)量關(guān)系,并證明;

2)如圖2,當(dāng)時(shí),的數(shù)量關(guān)系是否保持不變?

對(duì)于以上問題,小牧同學(xué)通過觀察、實(shí)驗(yàn),形成了解決該問題的幾種思路:

想法1:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過點(diǎn)D作線段垂線,交延長線于點(diǎn)G,連接;通過證明解決以上問題;

想法2:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過點(diǎn)D作線段垂線,垂足為點(diǎn)G,連接.通過證明解決以上問題;

想法3:嘗試?yán)盟狞c(diǎn)共圓,過點(diǎn)D垂線段,連接,通過證明DF、B、E四點(diǎn)共圓,利用圓的相關(guān)知識(shí)解決以上問題.

請(qǐng)你參考上面的想法,證明(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過直線外一點(diǎn)且與這條直線相切的圓稱為這個(gè)點(diǎn)和這條直線的點(diǎn)線圓.特別地,半徑最小的點(diǎn)線圓稱為這個(gè)點(diǎn)和這條直線的最小點(diǎn)線圓.

在平面直角坐標(biāo)系中,點(diǎn)

1)已知點(diǎn),,分別以,為圓心,1為半徑作,,以為圓心,2為半徑作,其中是點(diǎn)軸的點(diǎn)線圓的是________

2)記點(diǎn)軸的點(diǎn)線圓為,如果與直線沒有公共點(diǎn),求的半徑的取值范圍;

3)直接寫岀點(diǎn)和直線的最小點(diǎn)線圓的圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于BC兩點(diǎn),交y軸于點(diǎn)A,以AC為直角邊作等腰RtACD,連接BD分別交y軸和ACE、F兩點(diǎn),連接AB

1)求證:ABAD

2)若BF4,DF6,求線段CD的長;

3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與,重合),過點(diǎn)作射線,分別交弦,,兩點(diǎn),過點(diǎn)的切線交射線于點(diǎn)

1)求證:

2)當(dāng)的中點(diǎn)時(shí),

①若,試證明四邊形為菱形;

②若,且,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)yax24ax+a+1a0

1)若二次函數(shù)的圖象與x軸有交點(diǎn),求a的取值范圍;

2)若Pm,n)和Q5b)是拋物線上兩點(diǎn),且nb,求實(shí)數(shù)m的取值范圍;

3)當(dāng)m≤x≤m+2時(shí),求y的最小值(用含a、m的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案