【題目】如圖,已知矩形ABCD中,F是BC上一點(diǎn),且AF=BC,DE⊥AF,垂足是E,連接DF.求證:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分線.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)根據(jù)矩形性質(zhì)得出∠B=90°,AD=BC,AD∥BC,推出∠DAE=∠AFB,求出AF=AD,根據(jù)AAS證出即可;
(2)有全等推出DE=AB=DC,根據(jù)HL證△DEF≌△DCF,根據(jù)全等三角形的性質(zhì)推出即可.
(1)∵四邊形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠DEA=∠B=90°,
∵AF=BC,
∴AF=AD,
在△DEA和△ABF中
∵
∴△DEA≌△ABF(AAS);
(2)證明:∵由(1)知△ABF≌△DEA,
∴DE=AB,
∵四邊形ABCD是矩形,
∴∠C=90°,DC=AB,
∴DC=DE.
∵∠C=∠DEF=90°
∴在Rt△DEF和Rt△DCF中
∴Rt△DEF≌Rt△DCF(HL)
∴∠EDF=∠CDF,
∴DF是∠EDC的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,過(guò)點(diǎn)A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線x,點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A4的坐標(biāo)為______,點(diǎn)An______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在□ABCD中,線段EF分別交AD、AC、BC于點(diǎn)E、O、F,EF⊥AC,AO=CO.
(1)求證:△AOE≌△COF;
(2)在本題的已知條件中,有一個(gè)條件如果去掉,并不影響(1)的證明,你認(rèn)為這個(gè)多余的條件是 (直接寫(xiě)出這個(gè)條件).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(b、c是常數(shù),且c<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).
(1)b=______,點(diǎn)B的橫坐標(biāo)為_______(上述結(jié)果均用含c的代數(shù)式表示);
(2)連結(jié)BC,過(guò)點(diǎn)A作直線AE//BC,與拋物線交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),坐標(biāo)為(2,0),當(dāng)C、D、E三點(diǎn)在同一直線上時(shí),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線上的一動(dòng)點(diǎn),連結(jié)PB、PC.設(shè)△PBC的面積為S.①求S的取值范圍;②若△PBC的面積S為正整數(shù),則這樣的△PBC共有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上一點(diǎn),且AE=BC,DF⊥AE,垂足是F,連接DE.
求證:(1)DF=AB;
(2)DE是∠FDC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八(1)班同學(xué)為了解2018年姜堰某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,請(qǐng)解答以下問(wèn)題:
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | 12 | 0.24 |
10<x≤15 | m | 0.32 |
15<x≤20 | 10 | n |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
(1)本次調(diào)查采用的調(diào)杳方式是 (填“普査”或“抽樣調(diào)查”),樣本容量是 ;
(2)補(bǔ)全頻數(shù)分布直方圖:
(3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計(jì)圖,則月均用水量“15<x≤20”的圓心角度數(shù)是 ;
(4)若該小區(qū)有5000戶家庭,求該小區(qū)月均用水量超過(guò)20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在倡導(dǎo)學(xué)生大課間活動(dòng)中,隨機(jī)抽取了部分學(xué)生對(duì)“我最喜愛(ài)課間活動(dòng)”進(jìn)行了一次抽樣調(diào)查,分別從打籃球、踢足球、自由活動(dòng)、跳繩、其它、等5個(gè)方面進(jìn)行問(wèn)卷調(diào)查(每人只能選一項(xiàng)),根據(jù)調(diào)查結(jié)果繪制了如圖的不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息,解答下列問(wèn)題
(1)本次調(diào)查共抽取了學(xué)生多少人?
(2)求本次調(diào)查中喜歡踢足球人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校共有中學(xué)生1200人,請(qǐng)你估計(jì)我校喜歡跳繩學(xué)生有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com