【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點(diǎn)D為直線BC上的動(dòng)點(diǎn),過點(diǎn)D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點(diǎn)D在線段BC上時(shí),如圖1所示,①∠EDC= °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到CB延長(zhǎng)線上時(shí),請(qǐng)你畫出圖形,并證明此時(shí)DF與EC的數(shù)量關(guān)系.
【答案】(1)①22.5;②DF=2CE.證明見解析;(2)畫圖見解析,DF=2CE;理由見解析.
【解析】
(1)①由等腰直角三角形的性質(zhì)得出∠ABC=∠ACB=45°,求出∠BCM=67.5°,即可得出∠EDC的度數(shù);
②作∠PDE=22.5°,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,證明PD=CD,得出PC=2CE,由ASA證明△DNF≌△PNC,得出DF=PC,即可得出結(jié)論;
(2)作∠PDE=22.5°,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,證明PD=CD,得出PC=2CE,由ASA證明△DNF≌△PNC得出DF=PC,即可得出結(jié)論.
(1)①如圖1所示:
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠ACM=∠ABC=22.5°,
∴∠BCM=67.5°,
∵DE⊥CM,
∴∠EDC=90°-∠BCM=22.5°;
故答案為:22.5;
②DF=2CE.理由如下:
證明:作∠PDE=22.5°,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,如圖2所示:
∵DE⊥PC,∠ECD=67.5°,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中,
,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
(2)DF=2CE;理由如下:
證明:作∠PDE=22.5°,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,如圖3所示:
∵DE⊥PC,∠ECD=67.5,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中,
,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為斜邊作Rt△ABD,使點(diǎn)D落在△ABC內(nèi),∠ADB=90°.
(1)若AB=AC,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ACE,連接ED并延長(zhǎng)交BC于點(diǎn)P,請(qǐng)動(dòng)手在圖1中畫出圖形,并直接寫出∠BDP與∠BAC的數(shù)量關(guān)系 ;
(2)求證:BP=CP;
(3)如圖2,若AD=BD,過點(diǎn)D作直線DE⊥AC于E交BC于F,且AE=EC,若BF=3,AC=,則BD= (請(qǐng)直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,P是⊙O外一點(diǎn),PA,PB分別和⊙O切于A,B兩點(diǎn),C是上任意一點(diǎn),過C作⊙O的切線分別交PA,PB于D,E.(1)若△PDE的周長(zhǎng)為10,則PA的長(zhǎng)為___ __,(2)連結(jié)CA、CB,若∠P=50°,則∠BCA的度數(shù)為___ __度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a·c≠0,a≠c,下列四個(gè)結(jié)論:① 如果M有兩個(gè)相等的實(shí)數(shù)根,那么N也有兩個(gè)相等實(shí)數(shù)根;② 如果M與N有實(shí)數(shù)根,則M有一個(gè)根與N的一個(gè)根互為倒數(shù);③ 如果M與N有實(shí)數(shù)根,且有一根相同,那么這個(gè)根必是1;④ 如果M的兩根符號(hào)相同,那么N的兩根符號(hào)也相同;其中正確的是( )
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市從不同學(xué)校隨機(jī)抽取100名初中生對(duì)“使用數(shù)學(xué)教輔用書的冊(cè)數(shù)”進(jìn)行調(diào)查,統(tǒng)計(jì)結(jié)果如下:
冊(cè)數(shù) | 0 | 1 | 2 | 3 |
人數(shù) | 10 | 20 | 30 | 40 |
關(guān)于這組數(shù)據(jù),下列說法正確的是( 。
A.眾數(shù)是2冊(cè)B.中位數(shù)是2冊(cè)
C.平均數(shù)是3冊(cè)D.方差是1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線頂點(diǎn)為A(2,4),且過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,
①求拋物線的解析式;
②求△AOB面積;
③拋物線上是否存在點(diǎn)M,使△OBM的面積等于10?若存在,求出M點(diǎn)坐標(biāo),若不存在,說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com