已知|x1-1|+|x2-2|+|x3-3|+…+|x2002-2002|+|x2003-2003|=0,求代數(shù)式2x1-2x2-…-2x2002+2x2003的值.
分析:先根據(jù)非負(fù)數(shù)的性質(zhì)求出x1,x2,x3,…,x2002,x2003的值,再代入代數(shù)式,再應(yīng)用加法交換律和乘法分配律求出2x1-2x2-…-2x2002+2x2003的值.
解答:解:∵|x1-1|+|x2-2|+|x3-3|+…+|x2002-2002|+|x2003-2003|=0,
∴x1=1,x2=2,x3=3,…,x2002=2002,x2003=2003,
∴2x1-2x2-…-2x2002+2x2003
=2-22-…-22002+22003
=22003-22002-…-22+2
=22002-22001…-22+2
=22001-…-22+2
…
=22+2
=4+2
=6.
故代數(shù)式2x1-2x2-…-2x2002+2x2003的值為6.
點評:本題主要考查了非負(fù)數(shù)的性質(zhì):有限個非負(fù)數(shù)的和為零,那么每一個加數(shù)也必為零.同時考查了運用運算律使計算簡便,該題有一定難度.