【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1,CD=2,BC=m,點(diǎn)P是邊BC上一動(dòng)點(diǎn),若△PAB與△PCD相似,且滿足條件的點(diǎn)P恰有2個(gè),則m的值為_______

【答案】32

【解析】

由平行線得出∠C=90°,當(dāng)∠BAP=∠CDP時(shí),△PAB∽△PDC,得出 ,得出PC=2PB①,當(dāng)∠BAP=∠CPD時(shí),△PAB∽△DPC,得出,即PB×PC=1×2=2②,由①②得:PB=1,得出PC=2,BC=3;
設(shè)BP=x,則=m-x,得出x:2=1:(m-x),整理得:x2-mx+2=0,方程有唯一解時(shí),△=m2-8=0,解得:m=±2(負(fù)值舍去),得出m=2;即可得出結(jié)論.

∵AB∥CD,∠B=90°,
∴∠C+∠B=180°,
∴∠C=90°,
當(dāng)∠BAP=∠CDP時(shí),△PAB∽△PDC,
,即
∴PC=2PB①,
當(dāng)∠BAP=∠CPD時(shí),△PAB∽△DPC,
,即PB×PC=1×2=2②,
由①②得:2PB2=2,
解得:PB=1,
∴PC=2,
∴BC=3;
設(shè)BP=x,則=m-x,
∴x:2=1:(m-x),
整理得:x2-mx+2=0,
方程有唯一解時(shí),△=m2-8=0,
解得:m=±2負(fù)值舍去),
∴m=2
綜上所述,若△PAB與△PCD相似,且滿足條件的點(diǎn)P恰有2個(gè),則m的值為3或2;
故答案為:3或2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片,將分別沿折疊(),點(diǎn)和點(diǎn)都與點(diǎn)重合;再將沿折疊,點(diǎn)落在線段上點(diǎn)處.

1)判斷中有哪幾對(duì)相似三角形? (不需說(shuō)明理由)

2)如果,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)E是正方形ABCD中邊AB的中點(diǎn).

1)如圖1,點(diǎn)T為線段DE上一點(diǎn),連接BT并延長(zhǎng)交AD于點(diǎn)M,連接AT并延長(zhǎng)交CD于點(diǎn)N,且AMDN.試判斷線段AN與線段BM的關(guān)系,并證明;求證:點(diǎn)M是線段AD的黃金分割點(diǎn).

2)如圖2,在AD邊上取一點(diǎn)M,滿足AM2DMDA時(shí),連接BMDE于點(diǎn)T,連接AT并延長(zhǎng)交DC于點(diǎn)N,求tanMTD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)分別是的中點(diǎn),則下列四個(gè)判斷中不一定正確的是()

A. 四邊形一定是平行四邊形

B. ,則四邊形是矩形

C. 若四邊形是菱形,則是等邊三角形

D. 若四邊形是正方形,則是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDO的直徑,點(diǎn)BO上,連接BC、BD,直線ABCD的延長(zhǎng)線相交于點(diǎn)A,AB2ADAC,OEBD交直線AB于點(diǎn)EOEBC相交于點(diǎn)F

1)求證:直線AEO的切線;

2)若O的半徑為3,cosA,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCADE中,ACB=AED=90°,連接BDCE,EAC=DAB.

1)求證:ABC ∽△ADE

2)求證:BAD ∽△CAE;

3)已知BC=4,AC=3,AE=.將AED繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)E落在線段CD上時(shí),求 BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋中有大小形狀和質(zhì)地等完全相同的個(gè)小球,它們分別標(biāo)有數(shù)字,從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再?gòu)拇忻隽硪恍∏颍?/span>

1)請(qǐng)你用列表或畫樹狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結(jié)果;

2)規(guī)定:如果摸出的兩個(gè)小球上的數(shù)字都是方程的根,則小明贏;如果摸出的兩個(gè)小球上的數(shù)字都不是方程的根,則小亮贏.你認(rèn)為這個(gè)游戲規(guī)則對(duì)小明、小亮雙方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教育部基礎(chǔ)教育司負(fù)責(zé)人解讀“2020新中考時(shí)強(qiáng)調(diào)要注重學(xué)生分析與解決問(wèn)題的能力,要增強(qiáng)學(xué)生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學(xué)方法,將以往教會(huì)學(xué)生做題改為引導(dǎo)學(xué)生會(huì)學(xué)習(xí).于是她在菱形的學(xué)習(xí)中,引導(dǎo)同學(xué)們解決菱形中的一個(gè)問(wèn)題時(shí),采用了以下過(guò)程(請(qǐng)解決王老師提出的問(wèn)題):

先出示問(wèn)題(1:如圖1,在等邊三角形中,上一點(diǎn),上一點(diǎn),如果,連接,相交于點(diǎn),求的度數(shù).

通過(guò)學(xué)習(xí),王老師請(qǐng)同學(xué)們說(shuō)說(shuō)自己的收獲.小明說(shuō)發(fā)現(xiàn)一個(gè)結(jié)論:在這個(gè)等邊三角形中,只要滿足,則的度數(shù)就是一個(gè)定值,不會(huì)發(fā)生改變.緊接著王老師出示了問(wèn)題(2:如圖2,在菱形中,,上一點(diǎn),上一點(diǎn),,連接、、相交于點(diǎn),如果,求出菱形的邊長(zhǎng).

問(wèn)題(3):通過(guò)以上的學(xué)習(xí)請(qǐng)寫出你得到的啟示(一條即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案