【題目】某商店經(jīng)營一款新電動玩具,進(jìn)貨單價是30元。在1個月的試銷階段,售價是40元,銷售量是400件.根據(jù)市場調(diào)查,銷售單價若每再漲1元,1個月就會少售出10件.
(1)若商店在1個月獲得了6000元銷售利潤,求這款玩具銷售單價是定為多少元的,并考慮了顧客更容易接受.
(2)若玩具生產(chǎn)廠家規(guī)定銷售單價不低于43元,且商店每月要完成不少于350件的銷售任務(wù),求商店銷售這款玩具1個月能獲得的最大利潤.
【答案】(1)50元/件 (2)5250元
【解析】
(1)設(shè)單價定為元/件.則銷量為,根據(jù)總利潤=單件的利潤×銷量列出方程求解即可;
(2)根據(jù)玩具生產(chǎn)廠家規(guī)定銷售單價不低于43元,且商店每月要完成不少于350件的銷售量求出x的取值范圍,繼而利用二次函數(shù)的性質(zhì)進(jìn)行求解即可.
(1)設(shè)單價定為元/件.則銷量為.由題意,得
.
即.
整理,得.
解得,.
銷售單價是定為50 元/件,顧客更容易接受.
(2)由,得.
又..
銷售利潤
.
,對稱軸.
當(dāng)時, 隨增大而增大.
當(dāng)時,
商場銷售這款玩具1 個月能獲得的最大利潤為5250 元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,連接AC,BC.OE∥BC交AC于E,過點A作⊙O的切線交OE的延長線于點D,連接DC并延長交AB的延長線于點F.
(1)求證:DC是⊙O的切線;
(2)若∠BAC=30°,AB=4,直接寫出線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=2,與x軸的一個交點(﹣1,0),則下列結(jié)論正確的個數(shù)是( 。
①當(dāng)x<﹣1或x>5時,y>0;②a+b+c>0;③當(dāng)x>2時,y隨x的增大而增大;④abc>0.
A.3B.2C.1D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西安地鐵的開通運行給市民的出行方式帶來了一些變化,樂樂和小敏利用寒假時間,以問卷的方式對西安市民認(rèn)為地鐵站存在的問題進(jìn)行調(diào)查,如圖是西安地鐵四號線圖(部分).樂樂和小敏分別從行政中心(用表示)、文景路(用表示)、鳳城九路(用表示)這三站中,隨機(jī)選取一站作為調(diào)查的站點.
(1)在這三站中,求樂樂選取問卷調(diào)查的站點是文景路站的概率;
(2)請你用畫樹狀圖或列表法,求樂樂和小敏所選取問卷調(diào)查的站點相鄰的概率.(各站點用相應(yīng)的字母表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具商場計劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:
原進(jìn)價(元/張) | 零售價(元/張) | 成套售價(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?
(3)由于原材料價格上漲,每張餐桌和餐椅的進(jìn)價都上漲了10元,但銷售價格保持不變.商場購進(jìn)了餐桌和餐椅共200張,應(yīng)怎樣安排成套銷售的銷售量(至少10套以上),使得實際全部售出后,最大利潤與(2)中相同?請求出進(jìn)貨方案和銷售方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處,易證四邊形AECF是平行四邊形.當(dāng)∠BAE為( )度時,四邊形AECF是菱形.
A.30°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)經(jīng)過點A(1,-1)、B(3,3),且當(dāng)1≤x≤3時,-1≤y≤3,則a的取值范圍是___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com