如圖,拋物線y1=ax2-2ax+b經(jīng)過(guò)A(-1,0),C(0,
3
2
)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動(dòng),且∠MPQ=45°,設(shè)線段OP=x,MQ=
2
2
y2,求y2與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3)在同一平面直角坐標(biāo)系中,兩條直線x=m,x=n分別與拋物線交于點(diǎn)E、G,與(2)中的函數(shù)圖象交于點(diǎn)F、H.問(wèn)四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請(qǐng)說(shuō)明理由.
(1)∵拋物線y1=ax2-2ax+b經(jīng)過(guò)A(-1,0),C(0,
3
2
)兩點(diǎn);
a+2a+b=0
b=
3
2
,
解得
a=-
1
2
b=
3
2

∴拋物線的解析式為y1=-
1
2
x2+x+
3
2


(2)作MN⊥AB,垂足為N.
由y1=-
1
2
x2+x+
3
2
,易得M(1,2),N(1,0),A(-1,0),B(3,0);
∴AB=4,MN=BN=2,MB=2
2
,∠MBN=45°;
根據(jù)勾股定理有:BM2-BN2=PM2-PN2
∴(2
2
2-22=PM2-(1-x)2…①;
又∠MPQ=45°=∠MBP,∠PMQ=∠BMP(公共角),
∴△MPQ△MBP,
∴PM2=MQ•MB=
2
2
y2•2
2
=2y2…②;
由①②得:y2=
1
2
x2-x+
5
2
;
∵0≤x<3,
∴y2與x的函數(shù)關(guān)系式為y2=
1
2
x2-x+
5
2
(0≤x<3);

(3)四邊形EFHG可以為平行四邊形,m、n之間的數(shù)量關(guān)系是:m+n=2(0≤m≤2且m≠1);
∵點(diǎn)E、G是拋物線y1=-
1
2
x2+x+
3
2
分別與直線x=m,x=n的交點(diǎn),
∴點(diǎn)E、G坐標(biāo)為E(m,-
1
2
m2+m+
3
2
),G(n,-
1
2
n2+n+
3
2
);
同理,點(diǎn)F、H坐標(biāo)為F(m,
1
2
m2-m+
5
2
),H(n,
1
2
n2-n+
5
2
).
∴EF=
1
2
m2-m+
5
2
-(-
1
2
m2+m+
3
2
)=m2-2m+1,GH=
1
2
n2-n+
5
2
-(-
1
2
n2+n+
3
2
)=n2-2n+1;
∵四邊形EFHG是平行四邊形,EF=GH,
∴m2-2m+1=n2-2n+1,
∴(m+n-2)(m-n)=0;
∵由題意知m≠n,
∴m+n=2(m≠1);
因此四邊形EFHG可以為平行四邊形,m、n之間的數(shù)量關(guān)系是m+n=2(0≤m≤2且m≠1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)橫截面為拋物線形的遂道底部寬12米,高6米,如圖,車輛雙向通行,規(guī)定車輛必須在中心線右側(cè)距道路邊緣2米這一范圍內(nèi)行駛,并保持車輛頂部與遂道有不少于
1
3
米的空隙,你能否根據(jù)這些要求,建立適當(dāng)?shù)淖鴺?biāo)系,利用所學(xué)的函數(shù)知識(shí),確定通過(guò)隧道車輛的高度限制.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中:已知拋物線y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的對(duì)稱軸為x=-
1
2
,設(shè)拋物線與y軸交于A點(diǎn),與x軸交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)的左邊),銳角△ABC的高BE交AO于點(diǎn)H.
(1)求拋物線的解析式;
(2)在(1)中的拋物線上是否存在點(diǎn)P,使BP將△ABH的面積分成1:3兩部分?如果存在,求出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,四邊形ABCD是邊長(zhǎng)為5的正方形,以BC的中點(diǎn)O為原點(diǎn),BC所在直線為x軸建立平面直角坐標(biāo)系.拋物線y=ax2經(jīng)過(guò)A,O,D三點(diǎn),圖2和圖3是把一些這樣的小正方形及其內(nèi)部的拋物線部分經(jīng)過(guò)平移和對(duì)稱變換得到的.
(1)求a的值;
(2)求圖2中矩形EFGH的面積;
(3)求圖3中正方形PQRS的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,點(diǎn)C、B分別為拋物線C1:y1=x2+1,拋物線C2:y2=a2x2+b2x+c2的頂點(diǎn).分別過(guò)點(diǎn)B、C作x軸的平行線,交拋物線C1、C2于點(diǎn)A、D,且AB=BD.
(1)求點(diǎn)A的坐標(biāo):
(2)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=2x2+b1x+c1”.其他條件不變,求CD的長(zhǎng)和a2的值;
(3)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值______(直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

市“健益”超市購(gòu)進(jìn)一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗(yàn)知,每天銷售量y(千克)與銷售單價(jià)x(元)(x≥30)存在如下圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷售該綠色食品每天獲得利潤(rùn)為P元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)4480元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷售單價(jià)x的范圍(直接寫出).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

東方商廈專銷某品牌的計(jì)算器,已知每只計(jì)算器的進(jìn)價(jià)是12元,售價(jià)是20元.為了促銷,商廈決定:凡是一次性購(gòu)買10只以上(不含10只)的顧客,每多買1只計(jì)算器,其購(gòu)買的每只計(jì)算器的售價(jià)就降低O.10元(假設(shè)顧客購(gòu)買了18只計(jì)算器,則每只計(jì)算器售價(jià)為:20-0.10×(18-10)=19.20元,顧客應(yīng)付的購(gòu)貨款為:18×19.20=345.60元),但最低售價(jià)為16元/只.
(1)求顧客至少一次性購(gòu)買多少只計(jì)算器,才能以最低價(jià)購(gòu)買?
(2)設(shè)顧客一次性購(gòu)買x(10<x≤50)只計(jì)算器時(shí),東方商廈可獲利潤(rùn)y(元),試求y與x之間的函數(shù)關(guān)系式及商廈的最大利潤(rùn);
(3)有一天,一位顧客一次性購(gòu)買了46只計(jì)算器,另一位顧客一次性購(gòu)買了50只計(jì)算器,結(jié)果商廈發(fā)現(xiàn)賣50只反而比賣46只賺的錢少.為了使每次獲利隨著銷量的增大而增大,在其他促銷條件不變的情況下,商廈應(yīng)將最低價(jià)16元/只至少提高到多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示的拋物線是二次函數(shù)y=ax2-(a2-1)x+1的圖象,那么a的值是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案