【題目】【題目】如圖所示的105的數(shù)陣,是由一些連續(xù)奇數(shù)組成的,形如圖框中的四個數(shù),設(shè)第一行的第一個數(shù)為

1用含的式子表示另外三個數(shù);

2若這樣框中的四個數(shù)的和是200,求出這四個數(shù);

3是否存在這樣的四個數(shù),它們的和為246?為什么?

【答案】1x+2x+8,x+10;(245,47,53,55;(3)不存在.

【解析】試題分析:(1)觀察圖框中的四個數(shù),根據(jù)這四個數(shù)之間的數(shù)量關(guān)系,直接寫出答案即可;(2)根據(jù)框中的四個數(shù)的和是200,列出方程,解方程即可;(3根據(jù)框中的四個數(shù)的和是246,列出方程,解方程,根據(jù)方程解得情況判斷是否存在即可.

試題解析:

1

2)根據(jù)題意得: ,

解之得,

∴x+2=47,x+8=53,x+10=55.

答:這四個數(shù)分別為45、47、53、55.

3)不存在.

.

而奇數(shù)是整數(shù),所以不存在滿足條件的數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】xm+1+1+2m1x+10是關(guān)于x的一元二次方程,則m的值是( 。

A.1B.0C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9歲的小芳身高1.36米,她的表姐明年想報考北京的大學.表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對北京有所了解.他們四人7月31日下午從無錫出發(fā),1日到4日在北京旅游,8月5日上午返回無錫.

無錫與北京之間的火車票和飛機票價如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價票;飛機 (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價票.他們往北京的開支預(yù)計如下:

住宿費

(2人一間的標準間)

伙食費

市內(nèi)交通費

旅游景點門票費

(身高超過1.2米全票)

每間每天x

每人每天100元

每人每天y

每人每天120元

假設(shè)他們四人在北京的住宿費剛好等于上表所示其他三項費用之和,7月31日和8月5日合計按一天計算,不參觀景點,但產(chǎn)生住宿、伙食、市內(nèi)交通三項費用.

(1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;

(2)若去時坐火車,回來坐飛機,且飛機成人票打五五折,其他開支不變,他們準備了14000元,是否夠用? 如果不夠,他們準備不再增加開支,而是壓縮住宿的費用,請問他們預(yù)定的標準間房價每天不能超過多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是線段AB上一點,點M、N、P分別是線段ACBC、AB的中點, ,求:

線段AM的長;

線段PN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB及直線AB外一點P,按下列要求完成畫圖和解答:1)連接PAPB,用量角器畫出∠APB的平分線PC,AB于點C;

2)過點PPDAB于點D;

3)用刻度尺取AB中點E,連接PE;

4)根據(jù)圖形回答P到直線AB的距離是線段 的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是( 。

A.有一組鄰邊相等的平行四邊形是矩形

B.四條邊相等的四邊形是菱形

C.有一個角是直角的平行四邊形是菱形

D.對角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出不等式kx+b﹣<0的解集.

(3)P是x軸上的一點,且滿足△APB的面積是9,寫出P點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在D′處,則重疊部分△AFC的面積是(
A.8
B.10
C.20
D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:ACBC于C,DEBC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

同步練習冊答案