(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.
(1)點 (填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
(1)M;(2),當時,S的值最大;(3)存在,點M的坐標為(1,0)或(2,0),理由見試題解析.
解析試題分析:(1)(BC÷點N的運動速度)與(OA÷點M的運動速度)可知點M能到達終點.
(2)經(jīng)過t秒時可得NB=y,OM﹣2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
試題解析:(1)點M.
(2)經(jīng)過秒時,NB=,OM=,則CN=,AM=,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=,∴PQ=,
∴S△AMQ=AM•PQ==.∴,∴,∵,∴當時,S的值最大.
(3)存在.
設經(jīng)過秒時,NB=,OM=,則CN=,AM=,∴∠BCA=∠MAQ=45°.
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高,∴PQ是底邊MA的中線,∴PQ=AP=MA,
∴,∴,∴點M的坐標為(1,0).
②若∠QMA=90°,此時QM與QP重合,∴QM=QP=MA,∴,解得:,∴點M的坐標為(2,0).
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1).
(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
將進貨單價為30元的商品按40元出售時,每天賣出500件。據(jù)市場調查發(fā)現(xiàn),如果這種商品每件漲價1元,其每天的銷售量就減少10件。
(1)要使得每天能賺取8000元的利潤,且盡量減少庫存,售價應該定為多少?
(2)售價定為多少時,每天獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖1,已知拋物線y=-x2+bx+c經(jīng)過點A(1,0),B(-3,0)兩點,且與y軸交于點C.
(1) 求b,c的值。
(2)在第二象限的拋物線上,是否存在一點P,使得△PBC的面積最大?求出點P的坐標及△PBC的面積最大值.若不存在,請說明理由.
(3) 如圖2,點E為線段BC上一個動點(不與B,C重合),經(jīng)過B、E、O三點的圓與過點B且垂直于BC的直線交于點F,當△OEF面積取得最小值時,求點E坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(﹣2,0)和點C(0,﹣8).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為 ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
③設S0是②中函數(shù)S的最大值,直接寫出S0的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線的圖象,將其向右平移兩個單位后得到圖象.
(1)求圖象所表示的拋物線的解析式:
(2)設拋物線和軸相交于點、點(點位于點的右側),頂點為點,點位于軸負半軸上,且到軸的距離等于點到軸的距離的2倍,求所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
“惠民”經(jīng)銷店為某工廠代銷一種工業(yè)原料(代銷是指廠家先免費提供貨源,待貨物售出后再進行結算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸;該經(jīng)銷店為提高經(jīng)營利潤,準備采取降價的方式進行促銷,經(jīng)市場調查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸工業(yè)原料共需支付廠家及其它費用100元.
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)若在“薄利多銷、讓利于民”的原則下,當每噸原料售價為多少時,該店的月利潤為9000元;
(3)每噸原料售價為多少時,該店的月利潤最大,求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線的對稱軸是直線x=,與x軸交于點A、B兩點,與y軸交于點C,并且點A的坐標為(—1,0).
(1)求拋物線的解析式;
(2)過點C作CD//x軸交拋物線于點D,連接AD交y軸于點E,連接AC,設△AEC的面積為S1, △DEC的面積為S2,求S1:S2的值;
(3)點F坐標為(6,0),連接D,在(2)的條件下,點P從點E出發(fā),以每秒3個單位長的速度沿E→C→D→F勻速運動;點Q從點F出發(fā),以每秒2個單位長的速度沿F→A勻速運動,當其中一點到達終點時,另外一點也隨之停止運動.若點P、Q同時出發(fā),設運動時間為t秒,當t為何值時,以D、P、Q為頂點的三角形是直角三角形?請直接寫出所有符合條件的t值..
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com